

Outline

* Why documenting?
 Documentation guidelines

 Documentation example
 Compiled code: Doxygen and the format
* Python: docstrings

e Docs as code

e S CT

Why documenting?

 Documentation: written specifications,
Instructions, logic, proof of concept of source
code so it is readable by:

e humans
* machines

e S CT

Why documenting?

* A contract between callers and implementors.
* We continuously stumble upon it!
* |t may be annoying.

 We argue about it!

Why documenting?

* Running out of time!

* Not my responsibility..

* The others do not document. Why should | do it?
* | remember what | am coding!

 We are not Google! (or Microsoft, Pivotal etc.)
 Who is going to read it?

* |f | do not document, | shall be irreplaceable.

e S CT

Why documenting?

 Reminds you of what you code
* Helps in IDE autocompletion functionality.

* Creates a pleasant mood to your code editor /
reviewer / colleague.

* Reduces time spent on helping colleagues understand
your code. — Res ipsa loquitir (the thing itself speaks)

e S CT

Why documenting?

* Advertises your work (and consequently yourself)!

* Makes your product more competitive to other
products.

* Makes your code suitable for contributing in Open
Source projects.

e S CT

Documentation guidelines

* Documentation is part of the code!
* Document while writing

* Self-documenting code

- Variable, method, class, package etc. names must be
meaningful

- For very complex code sections, include short comment lines

Each function/class should come with
— a description of what it does
- the descrption and type of its arguments and return value

e S CT

Documentation guidelines

 Documentation is a live process. Update or
produce new version of it until the end of
development process

 Documentation is the story of your code

 Documentation reminds you that you write code
first for humans, then for machines

e S CT

Doxygen

Documentation Generator tools
* Tons of Languages
e Relationships
* Diagrams

http://www.doxygen.nl/

e S CT

Doxygen

doxygen -g

mportant variables

« PROJECT NAME

* PROJECT_ BRIEF

e OUTPUT DIRECTORY
« GENERATE_HTML

e S CT

Doxygen — methods

[** Registers the text to display in a tool tip.
* The text displays when the cursor lingers
* over the component.

* \param char* text the string to display.

* \return int return O on success

*/

Int setToolTipText(char* text) {

// your code
return O;

}

e S CT

Doxygen — files

[** \fle awesome_module.h

*

*

* \authors B.Gates

* \copyright 2019 eXact-lab s.r.l. GPLv2
*/
<your code here>

e S CT

Doxygen — mainpage

/**

*\mainpage My wonderful program
* \section intro_sec Introduction

*

* \authors B.Gates

* \copyright 2019 eXact-lab s.r.l. GPLv2
*/
<your code here>

e S CT

Running doxygen

e doxygen
or
* doxygen <configuration.file>

* Produces an html version and a latex version

* Latex version currently broken on some linux
distributions... (November 2019)

 Example http://www.netlib.org/lapack/explore-html/

e S CT

Python - docstrings

* Documentation string which is string literal, and
It occurs In the class, module, function or
method definition,

* Docstrings are accessible from the doc attribute
for any of the Python object

* Accessible also with the built-in help() function
can come In handy

e S CT

Python - docstrings

def some_function(argumentl):
""Summary or Description of the Function

Parameters:

argumentl (int): Description of argl
Returns:

Int:Returning value

return argumentl

print(some_function._ _doc_)

Summary or Description of the Function

help(some_function) Parameters: .
argumentl (int): Description of argl

Returns:
int:Returning value

docstrings and doxygen

* Doxygen iIs able to read docstrings, and
generate documentation from them

* The rendering Is not as fancy as using doxygen
tags

* Alternatively, you can use standard doxygen
stynthax, but you loose the help() and . _doc

e S CT

Docs as code

Writing, testing, publishing, and maintaining
documentation using the same tools developers
use for software code

Goals Tools
d Content authoring = Text editors
d Formatting, styling = Markup languages

1 Version control - Git, SVN,...

1 Issue tracking - JIRA, BugZilla,...

d Testing, validation = Scripts, linters, spell-checks,...
4 Publishing -> Site builders, CMS, ...

e S CT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

