

Outline

● Scientific software testing..
– What is scientific computing ?
– Why is so difficult to test simulations ?
– Reviewing verification/validation
– Some idea/suggestions

● Introducing the problem:
– What does testing software mean ?
– Why,where,when,who, what to test ?

3

Scientific Computing
● Computational science (or scientific computing) is the field

of study concerned with constructing mathematical models
and quantitative analysis techniques and using computers
to analyze and solve scientific problems.[Wikipedia]

● Distinguishing features:
– concerns with variables that are continuous rather than

discrete
– concerns with approximations and their effects

● Approximations are used not just by choice: they are
inevitable in most problems

4

Source of approximations

● Before computation begins:
– Modeling: neglecting certain physical features
– Empirical measurements: can’t always

measure input data to the desired precision
– Previous computations: input data may be

produced from error-prone numerical methods
● During computation:

– Truncation: numerical method approximate a
continuous entity

– Rounding: computers offer only finite precision
in representing real numbers

5

Rounding error
● Difference between result produced by a given algorithm

using exact arithmetic and result produced by the same
algorithm using rounded arithmetic

● Due to the inexact representation of real numbers and
arithmetic operations upon them

● To understand where and how they turn out we need to
know how computers deals with numbers..

● Error analysis techniques: how are your equations
sensitive to roundoff errors ?
– Forward error analysis: what errors did you make ?
– Backward error analysis: which problem did you solve exactly ?

Errors and faults

Error

is a measure of the difference between a measured or
calculated value of a quantity and what is considered
to be its actual value.

Faults

Code faults are mistakes made when abstract
algorithms are implemented in code.

Faults are not errors, but they frequently lead to
errors.

8

Stupid example
● Computing surface area of Earth using formula

 A=4r2

● This involves several approximations:
– Modeling: Earth is considered as a sphere…
– Measurements: value of radius is based on empirical

methods
– Truncation: value for  is truncated at a finite number
– Rounding: values for input data and results of

arithmetic operations are rounded in computer.

● Verification: "Are we building the product right ?"
– The software should conform to its specification

● Validation: "Are we building the right product ? "
– The software should do what the user really requires

● V & V must be applied at each stage in the software
process

● Two main objectives:
– Discovery of defects in a system
– Assessment of whether the system is usable in an operational

situation

Verification & validation

Testing

● Software testing is a process by which one or more expected
behaviors and results from a piece of software are exercised and
confirmed.

● Well chosen tests will confirm expected code behavior for the
extreme boundaries of the input domains, output ranges,
parametric combinations, and other behavioral edge cases.

● Software testing can be stated as the process of validating and
verifying that a software program/application/product:
– meets the requirements that guided its design and development;
– works as expected
– can be implemented with the same characteristics.

(from wikipedia)

The 5 W of testing: Why testing ?

● To provide confidence

– on reliability
– on (probable) correctness
– on detection (therefore absence) of particular faults

● Other issues include:
– Performance of systems (i.e. use of resources like time,

space, Bandwidth,...).
– “...ilities” can be the subject of test e.g. usability, learnability,

availability, etc..

The 5 W of testing: When testing ?

● When:
– Always !

● Different granularity:
– When I/they change of the code
– Every night to check possible problem
– When a new feature/release is available
– When we start using a new package for scientific

research

The 5 W of testing: Who should test ?

● Who:
– You as developer
– You as part of a developing team:

● Try to test things you did not write
● Find some other to test you own software

– You as user:
● Is this software/package/routines/code what I really need ?

– You as scientific user (never use scientific code
without your own test !!!)

The 5 W of testing: Where to test ?

● Software point of view
– On any single function of your code:

● Unit testing

– On a portion of the code
● Integration testing

– On the code as a whole
● Regression tests
● Acceptance tests

● Hardware point of view
– On all the possible platforms you have at disposal

● Ensure portability of software and of scientific output !

The 5 W of testing: What should I test ?

● Software characteristics:
– Usability
– Portability
– Performance
– Reliability
– Scalability

● Scientific Software correctness

Errors and faults

Error

is a measure of the difference between a measured or
calculated value of a quantity and what is considered
to be its actual value.

Faults

Code faults are mistakes made when abstract
algorithms are implemented in code.

Faults are not errors, but they frequently lead to
errors.

18

Scientific Computing
● Computational science (or scientific computing) is the field

of study concerned with constructing mathematical models
and quantitative analysis techniques and using computers
to analyze and solve scientific problems.[Wikipedia]

● Distinguishing features:
– concerns with variables that are continuous rather than

discrete
– concerns with approximations and their effects

● Approximations are used not just by choice: they are
inevitable in most problems

19

Source of approximations

● Before computation begins:
– Modeling: neglecting certain physical features
– Empirical measurements: can’t always

measure input data to the desired precision
– Previous computations: input data may be

produced from error-prone numerical methods
● During computation:

– Truncation: numerical method approximate a
continuous entity

– Rounding: computers offer only finite precision
in representing real numbers

20

Rounding error
● Difference between result produced by a given algorithm

using exact arithmetic and result produced by the same
algorithm using rounded arithmetic

● Due to the inexact representation of real numbers and
arithmetic operations upon them

● To understand where and how they turn out we need to
know how computers deals with numbers..

● Error analysis techniques: how are your equations
sensitive to roundoff errors ?
– Forward error analysis: what errors did you make ?
– Backward error analysis: which problem did you solve exactly ?

22

Stupid example
● Computing surface area of Earth using formula

 A=4r2

● This involves several approximations:
– Modeling: Earth is considered as a sphere…
– Measurements: value of radius is based on empirical

methods
– Truncation: value for  is truncated at a finite number
– Rounding: values for input data and results of

arithmetic operations are rounded in computer.

Type of testing

● Unit testing
● Integration testing
● Regression testing
● Acceptance testing

Unit testing

● is a level of the software testing process where
individual units/components of a
software/system are tested

● The purpose is to validate that each unit of the
software performs as designed

Unit testing

● concerned with functional correctness and
completeness of individual program units

● typically written and run by software developers
to ensure that code meets its design and
behaves as intended.

● Its goal is to isolate each part of the program
and show that the individual parts are correct.

Unit testing

Concerned with
● Functional correctness and completeness
● Error handling
● Checking input values (parameter)
● Correctness of output data (return values)
● Optimizing algorithm and performance

Unit testing shoul be

● Isolatable
● Repeatable
● Automatable
● Easy to Write

Unit testing

● Unit testing allows the programmer to refactor
code at a later date, and make sure the module
still works correctly.

● By testing the parts of a program first and then
testing the sum of its parts, integration testing
becomes much easier.

● Unit testing provides a sort of living
documentation of the system.

Unit test guidelines

● Keep unit tests small and fast
– Ideally the entire test suite should be executed before

every code push. Keeping the tests fast reduce the
development turnaround time.

● Unit tests should be fully automated and non-
interactive
– The test suite is normally executed on a regular basis and

must be fully automated to be useful. If the results require
manual inspection the tests are not proper unit tests.

Unit test guidelines

● Make unit tests simple to run
– Configure the development environment so that

single tests and test suites can be run by a single
command or a one button click.

● Keep tests independent
– To ensure testing robustness and simplify

maintenance, tests should never rely on other tests
nor should they depend on the ordering in which
tests are executed.

Integration testing

● Testing in which software components,
hardware components, or both together are
combined and tested to evaluate interactions
between them
– Big-bang
– Incremental

● Bottom-up
● Top-down
● Sandwich

Integration testing - Bing bang

Here all component are integrated together at
once and then tested.

● Advantages:
– Convenient for small systems.

● Disadvantages:
– Fault Localization is difficult.
– Given the sheer number of interfaces that need to

be tested in this approach, some interfaces link to
be tested could be missed easily.

Integration testing – Stubs and Drivers

● Incremental Approach is carried out by using
dummy programs called Stubs and Drivers.

● Stubs and Drivers do not implement the entire
programming logic of the software module but
just simulate data communication with the
calling module.
– Stub: Is called by the module under test.
– Driver: Calls the module to be tested.

Regression testing

● is defined as a type of software testing to confirm
that a recent program or code change has not
adversely affected existing features.

● is nothing but a full or partial selection of already
executed test cases which are re-executed to
ensure existing functionalities work fine.

● This testing is done to make sure that new code
changes should not have side effects on the
existing functionalities. It ensures that the old code
still works once the new code changes are done.

Acceptance test

● Formal testing with respect to user needs,
requirements, and business/scientific processes
conducted to determine whether or not a
system satisfies the acceptance criteria and to
enable the user, customers or other authorized
entity to determine whether or not to accept the
system.

Testing framework

● C
– CTest

– Cunit

● Python
– Unittest
– Nose
– pytest

	Slide 1
	Slide 2
	Scientific Computing
	Source of approximations
	Rounding error
	Slide 6
	Slide 7
	Example: Approximations
	Verification vs. validation
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Scientific Computing
	Source of approximations
	Rounding error
	Slide 21
	Example: Approximations
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

