

● The problems with lots of code and lots of
people

● Version control systems
● what are they?

● how are they used?

● centralized versus distributed version control

● Features of version control including branching

● Introduction to Git

Dealing with Change
● How do you manage your code regarding

– Modifying existing code

– Backing up working code

– Checking if an idea works

– Sharing code in group projects

Making a mess – Managing the linux kernel

• 26 millions lines of code (end of 2018)

• The Linux kernel runs on different processors (ARM, x86,
MIPS). These can require significant differences in low level
parts of the code base

• Many different modules

• Old versions are required for legacy systems

• Because it is open source, any one can download and suggest
changes.

• How can we create a single kernel from all of this?

Details of the process

• Files are kept in a repository

• Repositories can be local or remote to the user

• The user edits a copy called the working copy

• Changes are committed to the repository when the
user is finished making changes

• Other people can then access the repository to get
the new code

• Can also be used to manage files when working
across multiple computers

Centralised Version Control

● A single server holds the code base

● Clients access the server by means of
check-in/check-outs

● Examples include CVS, Subversion, Visual Source
Safe.

Advantages: Easier to maintain a single server.

Disadvantages: Single point of failure.

Distributed Version Control
● Each client (essentially) holds a complete copy

of the code base.

● Code is shared between clients by push/pulls

– Advantages: Many operations cheaper. No single
point of failure

– Disadvantages: A bit more complicated!

More Uses of Version Control
● Version control is not just useful for collaborative working,

essential for quality source code development
● Often want to undo changes to a file

● start work, realize it's the wrong approach, want to get back to
starting point

● like "undo" in an editor…

● keep the whole history of every file and a changelog

● Also want to be able to see who changed what, when
● The best way to find out how something works is often to ask the

person who wrote it

Branching
● Branches allows multiple copies of the code base within a single

repository.

– Different customers have different requirements

● Customer A wants features A,B, C

● Customer B wants features A & C but not B because his computer is old and it
slows down too much.

● Customer C wants only feature A due to costs

– Each customer has their own branch.

● Different versions can easily be maintained

Git basics

• https://git-scm.com/download

• https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git

• Let’s define ourselves first
– git config --global user.email "you@example.com"

– git config --global user.name "Your Name"

Local first

● first lets make a git folder in our computer
– git init

● add a file to the folder
– git add newfile.file
– git status
– git commit -m “new file added”

Ignore some file?

● Create a file called .gitignore
– Write the file names that should be ignored by git
– Commit the file

Then remote

● Create a repo on Github
● Add the remote

– git remote add origin <repo url>

● Now you can push
– git push origin master

Remove a file

● git rm somefile.txt
● git commit –m ‘removed’
● git push origin master

Create a branch

● git checkout -b development
● modify newfile.txt
● git add newfile.txt
● git commit –m ‘removed’
● git push origin development

Merge a branch

● git checkout master
● git merge development

Pulling a repository/editing

● lets clone a repository from github
● git clone https://github.com/cosai/test

● Edit the file a.txt
● git add a.txt
● git status
● git commit –m ‘something added’
● git push origin

Going back

● Git log
– Show me the logs

● See the commit id
– git reset --hard HEAD

● Destroys the local modifications!
● git clean
● Removes untracked files!

One step back!

● An easy way to revert last commit (1)
– git revert HEAD~1
– git push origin

● Use it with caution!
● Try not to rewrite history (if can avoid it)

	Slide 1
	On today’s menu...
	Dealing with Change
	(Bad) Solutions
	Making a mess
	Not just code!
	Control the process automatically
	Details of the process
	Centralised Version Control
	Slide 10
	Distributed Version Control
	Slide 12
	More Uses of Version Control
	Branching
	Slide 15
	Merging
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Local first
	Ignore?
	Slide 29
	Remove a file
	Slide 31
	Slide 32
	Pulling a repository/editing
	Go back to ies
	One step back!
	Slide 36

