


● The problems with lots of code and lots of 
people 

● Version control systems
● what are they?

● how are they used?

● centralized versus distributed version control

● Features of version control including branching

● Introduction to Git



Dealing with Change
● How do you manage your code regarding

– Modifying existing code 

– Backing up working code

– Checking if an idea works 

– Sharing code in group projects





Making a mess – Managing the linux kernel

• 26 millions lines of code (end of 2018)

• The Linux kernel runs on different processors (ARM, x86, 
MIPS).  These can require significant differences in low level 
parts of the code base

• Many different modules

• Old versions are required for legacy systems

• Because it is open source, any one can download and suggest 
changes. 

• How can we create a single kernel from all of this?







Details of the process

• Files are kept in a repository

• Repositories can be local or remote to the user

• The user edits a copy called the working copy

• Changes are committed to the repository when the 
user is finished making changes

• Other people can then access the repository to get 
the new code

• Can also be used to manage files when working 
across multiple computers 



Centralised Version Control

● A single server holds the code base

● Clients access the server by means of 
check-in/check-outs

● Examples include CVS, Subversion, Visual Source 
Safe.

Advantages: Easier to maintain a single server.

Disadvantages: Single point of failure. 





Distributed Version Control
● Each client (essentially) holds a complete copy 

of the code base.

● Code is shared between clients by push/pulls

– Advantages: Many operations cheaper. No single 
point of failure

– Disadvantages: A bit more complicated!





More Uses of Version Control
● Version control is not just useful for collaborative working, 

essential for quality source code development
● Often want to undo changes to a file

● start work, realize it's the wrong approach, want to get back to 
starting point

● like "undo" in an editor…

● keep the whole history of every file and a changelog 

● Also want to be able to see who changed what, when
● The best way to find out how something works is often to ask the 

person who wrote it



Branching
● Branches allows multiple copies of the code base within a single 

repository.

– Different customers have different requirements

● Customer A wants features A,B, C

● Customer B wants features A & C but not B because his computer is old and it 
slows down too much.

● Customer C wants only feature A due to costs

– Each customer has their own branch.

● Different versions can easily be maintained









Git basics

• https://git-scm.com/download

• https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git

• Let’s define ourselves first
–  git config --global user.email "you@example.com"

–  git config --global user.name "Your Name"







Local first

● first lets make a git folder in our computer
– git init

● add a file to the folder
– git add newfile.file
– git status
– git commit -m “new file added”



Ignore some file?

● Create a file called .gitignore
– Write the file names that should be ignored by git
– Commit the file



Then remote

● Create a repo on Github 
● Add the remote 

– git remote add origin <repo url>

● Now you can push
– git push origin master



Remove a file

● git rm somefile.txt
● git commit –m ‘removed’
● git push origin master



Create a branch

● git checkout -b development
● modify newfile.txt 
● git add newfile.txt
● git commit –m ‘removed’
● git push origin development



Merge a branch

● git checkout master
● git merge development



Pulling a repository/editing

● lets clone a repository from github
● git clone https://github.com/cosai/test

● Edit the file a.txt
● git add a.txt
● git status
● git commit –m ‘something added’
● git push origin



Going back

● Git log
– Show me the logs 

● See the commit id
– git reset --hard HEAD

● Destroys the local modifications!
● git clean
● Removes untracked files!



One step back!

● An easy way to revert last commit (1)
– git revert HEAD~1
– git push origin

● Use it with caution!
● Try not to rewrite history (if can avoid it)
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