

Debugging
The process of identifying the cause of an error
and correcting it

Once you have identified what the defects are,
you must
● find the cause
● remove the defect from your code

A lot of programmers don't know how to debug!

20 to 1 difference in the time it takes experienced
programmers to find and fix the same set of errors

Debugging (2)
● Debugging doesn't improve the quality of your

software
– It's a way to remove defects

● You get better results by doing the design
process properly
– Requirements analysis
– Good design
– High quality programming practices

● Debugging is a last resort

Errors are Opportunities
● Learn from the program you're working on

– Errors mean there's something you don't understand about the
program

– If you knew it perfectly, it wouldn't have an error, You would have
fixed it already

● Learn about the kind of mistakes you make
– If you wrote the program, you inserted the error
– Once you find a mistake, ask:

● Why did you make it?
● How could you have found it more quickly?
● How could you have prevented it?
● Are there other similar mistakes in your code? Can you correct them now,

instead of waiting to find them later?

Errors are Opportunities
● Learn about the quality of your code from the point of view of someone who has

read it
– Look critically at your code
– Is it easy to read?
– How could it be better?

● Use your discoveries to improve the next code you write
– Learn about how you solve problems
– Is your approach to debugging productive?
– Do you need to improve it?
– You can spend hours and hours (even days, months) on debugging
– Taking some time to think about how you are debugging is not going to take much more time

● Learn about how you fix errors
– Do you apply goto band-aids?
– Do you fix special cases?
– Do you make systemic corrections?

● Find the error by guessing
● Scatter print statements randomly throughout the program
● Examine the output to see where the error is
● If you can't find it that way, try changing things until something

seems to work
● Don't keep track of what you changed
● Don't backup the original
● Don't waste time trying to understand the problem
● It's likely that the problem is trivial, and you don't need to

understand it completely to fix it
● Fix the error with the most obvious fix
● It's usually good just to fix the specific problem you see, rather

than wasting a lot of time making some big ambitious correction
that is going to affect the whole program

Devil's guide to Debugging

● Source code comparator/ revision system (git!)
– helps you find where you changed the code
– look up the vimdiff/tkdiff program

● Compiler warning messages
– Set the compiler warning level to the highest level, and

fix the code so that it doesn't produce any warnings!
– Treat warnings as errors:

● Gcc flags -Wall

– Enable all the warnings which the authors of cc believe
are worthwhile. Despite the name, it will not enable all
the warnings cc is capable of.

Debugging tools..

● Extended syntax and logic checking
● GCC flags:

– --ansi : Turn off most, but not all, of the non-ANSI C features
provided by cc. Despite the name, it does not guarantee
strictly that your code will comply to the standard.

– -pedantic: Turn off all cc's non-ANSI C features.

● Execution Profiler
– Programmer errors can cause bad performance as well as bad

output
– Identify routines that take up a disproportionate amount of

execution time

Debugging tools (2)

Debuggers
● The purpose of a debugger:

● allow you to follow the execution of a program
● help you to understand what a program was doing at the

moment it crashes.

● To use debugger you have to generate debugging
info at compilation time:

● compile with -g option
● all the debugging info are stored in the *.o files

● Lots of debuggers:
● graphical debuggers:
● user friendly
● text debuggers:

– not user friendly but almost always available

● Start your program, specifying anything that
might affect its behavior

● Make your program stop at specified conditions
● Examine what has happened, when your

program has stopped
● Change things in your program during execution,

so you can experiment with correcting the effects
of one bug and go on to learn about other

What a debugger should do

What is not able to do
● Even though GDB can help you in finding out

memory leakage related bugs, but it is not a
tool to detect memory leakages.

● GDB cannot be used for programs that compile
with errors and it does not help in fixing those
errors.

Gdb

GDB A GNU source level debugger
– portable
– efficient
– it has some GUI

● To use it:
– interactive way: just launch the program and then load the executable
– Postmortem: analyze what went wrong by means of the core dump

file (a snapshot of the memory when program crash)
– core files are automatically produced by all unless this feature is

disabled by the user.
● Check ulimit -c value

Generating symbol table for GDB
In order to include debugging information in your code, you need to compile it
with –g family options (read the gcc manual for complete info):

 -g

produce dbg info in O.S. native format

-ggdb

produce gdb specific extended info, as much as possible

-glevel

default level is 2. 0 amounts to no info, 1 is minimal, 3 includes extra
information (for instance, macros expansion) – this allows macro expansion;
add -gdwarf-n in case, where possibile, where n is the maximum allowed (4)

-ggdblevel

you can combine the two to maximize the amount of useful info generated

remember: -fno-omit-frame-pointer, especially if you are using –Ox

● break
– A breakpoint makes your program stop whenever a certain

point in the program is reached. in the program.

– break FUNCTION
● Set a breakpoint at entry to function FUNCTION.

– break LINENUM
● Set a breakpoint at line LINENUM in the current source file.

– break FILENAME:LINENUM

– Set a breakpoint at line LINENUM in source file FILENAME.

– break ... if COND
● Set a breakpoint with condition COND;

Stopping execution

● watch
– watch EXPR

– Set a watchpoint for an expression. GDB will break
when EXPR is written into by the program and its value
changes.

● info
– Print a table of all breakpoints and watchpoints set

Stopping execution (2)

● run
– Use the `run' command to start your program under GDB. You

must first specify the program name with an argument to GDB, or
by using the `file' or `exec-file' command.

● step
– Continue running your program until control reaches a different

source line, then stop it and return control to GDB. This command
is abbreviated s.

● step [COUNT] (shorthand s)
– Continue running as in `step', but do so COUNT times. If a

breakpoint is reached, or a signal not related to stepping occurs
before COUNT steps, stepping stops right away.

Running/resuming execution (1)

● next [COUNT] (shorthand n)
– Continue to the next source line in the current (innermost) stack

frame. This is similar to `step', but function calls that appear within
the line of code are executed without stopping. Execution stops
when control reaches a different line of code at the original stack
level that was executing when you gave the `next' command. This
command is abbreviated `n'.

● continue [IGNORE-COUNT] (shorthand c)
– Resume program execution, at the address where your program last

stopped; any breakpoints set at that address are bypassed. The
optional argument IGNORE-COUNT allows you to specify a further
number of times to ignore a breakpoint at this location.

● finish
– Continue running until just after function in the selected stack frame

returns. Print the returned value (if any).

Running/resuming execution (2)

● print [EXP] (shorthand p)
– EXP is an expression (in the source language). By default the value of

EXP is printed in a format appropriate to its data type; If you omit EXP,
GDB displays the last value again.

● display EXP (shorthand disp)
– Add the expression EXP to the list of expressions to display each time

your program stops. `display' does not repeat if you press RET again
after using it.

● list (shorthand l)
– To print lines from a source file, use the `list' command (abbreviated `l').

By default, ten lines are printed.
– list LINENUM :

● Print lines centered around line number LINENUM in the current source file.

– list FUNCTION : Print lines centered around the beginning of
function FUNCTION.

Examining data and source code

When your program has stopped, the first thing you need
to know is where it stopped and how it got there.

Each time your program performs a function call,
information about the call is generated. That information
includes the location of the call in your program, the
arguments of the call, and the local variables of the
function being called. The information is saved in a block
of data called a "stack frame". The stack frames are
allocated in a region of memory called the "call stack".

backtrace (shorthand bt)

Print a backtrace of the entire stack: one line per frame for
all frames in the stack.

Examining the stack

Valgrind [http://valgrind.org/]

● Valgrind is an instrumentation framework for
building dynamic analysis tools.

● The Valgrind distribution currently includes six
production-quality tools..
● A memory error detector, (memcheck)
● two thread error detectors,
● A cache and branch-prediction profiler,
● A call-graph generating cache
● A branch-prediction profiler
● A heap profiler.

Valgrind

Valgrind basically runs your code in a virtual ‚sandobx‛
where a synthetic CPU (the same you have) is simulated
and executes an instrumented code. There are various
Valgrind based tools for debugging and profiling purposes.

•Memcheck is a memory error detector correctness

•Cachegrind is a cache and branch-prediction profiler
velocity

•Callgrind is a call-graph generating cache profiler. It has
some overlap with Cachegrind

KCacheGrind is a very useful GUI

Memcheck
● Detects memory-management problem and is aimed primarily at C

and C++ programs.
● When a program is run under Memcheck's supervision, all reads and

writes of memory are checked, and calls to malloc/new/free/delete
are intercepted. As a result, Memcheck can detect if your program:

● Accesses memory it shouldn't (areas not yet allocated, areas that have been freed,
areas past the end of heap blocks, inaccessible areas of the stack).

● Uses uninitialised values in dangerous ways.
● Leaks memory.
● Does bad frees of heap blocks (double frees, mismatched frees).
● Passes overlapping source and destination memory blocks to memcpy() and related

functions.

● Memcheck reports these errors as soon as they occur, giving the
source line number at which it occurred, and also a stack trace of the
functions called to reach that line.

● Memcheck runs programs about 10--30x slower than normal.

Using Valgrind
● COMPILING

– gcc -g –fno-omit-frame-pointer my_prog.c –o
my_prog

● RUNNING
– Valgrind –tool=callgrind –callgrind-out-file=
$CALLGRIND_OUT –dump-instr=yes –coolect-
jumps=yes –cache-sim=yes –branch-sim=yes < --
I1=… > < --D1=…> my_prog <args>

● ANALYZING
– kcachegrind $CALLGRIND_OUT

Hands on session: please follow
the tutorial

Final citation

● « Debugging is twice as hard as writing the
code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by
definition, not smart enough to debug it. »

 (Brian Kernighan, The Elements of
 Programming Style)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

