
Stefano Cozzini
CRS – OGS Udine – 26 Novembre 2019
Programming languages and compilers for scientific 
computing 



Aims&Goals
● AIM: examine how to go from a piece of source code to a 

running application
● Discuss: 

– which programming languages are available (briefly)
– what is a compiler and how it works 
– different stages involved in the process of compiling
– how a program actually runs 
– A bunch of useful commands/options when dealing with code

● Motivation: the interaction between application and the system is 
often poorly understood but a greater  knowledge can be helpful 
to efficient software development



Programming languages
● choice of language for a given task is often a 

thorny issue. 
● For us: a programming language is only a tool for 

writing scientific code. 
● The computer language that you use will hopefully 

be  the one that best facilitates this task. 
● Many differences between high level language 

which may be viewed as advantages or 
disadvantages depending on the task you are 
trying to solve.



Interpreted languages 
● An interpreter is a program which itself executes other 

programs. 
- JavaScript, Python and awk 

● Advantages: 
● it can be quicker to run the code under the interpreter than compile and run it with 

a compiler. 
● code is easier to debug (interpreter will analyze each  statement in the code each 

time it is executed) 

● Where to use interpreted languages: 
● for small applications prototyping and testing of code  when an edit-interpret-

debug cycle can often be much  quicker than an edit- compile-run-debug cycle. 

● NOT a good idea to perform numerically intensive calculations 
using interpreted languages.



5

Python:  “batteries included” 

● Suitable for:
– Text processing
– Data pre/post processing
– small/large tasks

● Built-in comprehensive library of functions (“ the 
python way”)

● Easy to write maintainable code



Python for scientific computing 

● Easy to prototype
● Easy to manage complex workflow 
● A plethora of scientific libraries

– numpy/scipy/matplotlib/scikit-learn

● Easy to run intensive computational jobs if right 
highly optimized libraries below 

● Easy to write ugly and unefficient code



compiled languages  

● Needed to perform numerically intensive calculations 
● Run Time >> Compiling/debugging time 
● Examples: 

● Fortran 
● C 
● C++ 
● Java 

● Others ?



Fortran

● Still the main language within the scientific 
community 

● It is likely to hold this position for a long time. 
● Why?

● Some issues within C that make the language  inherently 
more difficult to compile and produce good optimization 
(mainly dynamical d-referencing of pointers). 

● Tons of libraries written in Fortran 
● Tons of computational codes written in F77 
● laziness of users 



C for scientific computing?

● C works well in many domains: graphics, I/O, 
O.S. world

● C does not natively have library and tools for 
scientific computing 

● Limits (?)  in numerical computation:
– F90 array notation is missing 
– Tons of numerical software is written in F77/90



C++

● C++ was initially an extension to C to incorporate full 
object-oriented(OO )programming techniques.

● C can be regarded as a subset of C++, so a C++ 
compiler will (hopefully) be able to compile a C code to 
achieve the same performance. 

● The main design aim of C++ is to design and build 
large applications using OO techniques.

● However performance can drop if you use OO without 
care..  



Why Compilers?
● Compiler

– A program that translates from one language to another
– It should create an efficient version of the target language
– Your best friend ! 

● In the beginning, there was machine language
– Ugly – writing code, debugging
– Then came textual assembly – still used on some devices..
– High-level languages – Fortran, Pascal, C, C++
– Machine structures became too complex and software 

management too difficult to continue with low-level 
languages



26/11/19

Compilers for Linux 

● Free/Open Source:
● GNU http://www.gnu.org/ (Fortran 77, C, C++, …)

● Commercial:
● PGI (Fortran 77, Fortran 90, C, C++)
● Intel (Fortran 77/95, C/C++) 
● And many other... 

● Almost all allow you a 30 day evaluation license 



Knowing your compiler 

● Calling a compiler you invoke a driver 
program that hides the different compilation 
stages. 

● You can use compiler flags to show all the in-
between stages and/or output intermediate 
results from any of these stages. 

● These flags tends to be compiler dependent



14

Compilation steps..



A word of caution... 
● The terminology here might be slightly confusing as 

we are using the term compiler in two ways
– the compilation process is what will take source code 

and produce executable machine code. 
– In the diagram above we use "compiler" to encompass 

just a step of the procedure: 
– actually this is composed by following four stages: 

● 1. lexical analysis; 
● 2. syntax and 
● 3.semantic analysis; 
● 4. Intermediate Level Code (ILC) generation.



Using a preprocessor 
● C files are automatically pre-processed before they 

are passed to the front end of the compiler. 
● You can output preprocessed files (*.i suffix) using 

-P -E
● To preprocess Fortran files use *.F (fixed) or *.F90 

(free ) extensions for the source files. 
● Preprocessing can be done explicitly by cpp, or fpp 

or using embedded preprocessor that comes with 
the F90 compiler itself.

  cc -E demo.c  
  



Using a preprocessor (2) 
● Typically preprocessors perform mainly text based 

manipulations. 
● Preprocessor commands (known as "pragmas" in C) 

always begin with #, (#include, #define, #ifdef )
● It is possible to use the same preprocessor for Fortran 

programs and the # must be located in the first character 
position. 

● These commands instruct the preprocessor to: 
● include external (header) files conditionally
● enable source code compilation 
● perform textual substitution (expansion on Macro/embedding constant)



conditional compilation (an example)
● to comment out sections of code, possibly 

machine specific:

  

 
● The code will be compiled: at compile time 

by adding #define DEBUG   at the top of the 
relevant source file or in a generic header file

●  from the command line: 

 

#ifdef X86_64 
 /* 64 bit architecture specific code */
 #endif
#ifdef DEBUG
 /* enable extra printout and/or extra checks/control 
#endif 

  cc -DDEBUG -i demo.c  
  



● Great tools: very useful (portability) 
● However: for the sake of clarity, do not overuse 

#ifdef. 
● TIP: If you find that you have a lot of different 

options it might be better to separate the source 
code into separate files and then use make to 
perform the required compilation.

Preprocessing: final considerations



Compiler stages
● The front end stages: 

● several front end (each for any language) 
● each of one produce the ILC (portable) 

● the back-end stage  (as) 
● produce machine-specific assembler code then to re-locatable 

object code. 

● the linker stage:  (ld)
● link together all the pieces to produce the executable



The front-end: actions
● first: The parser, syntax and semantic analysis removes 

unnecessary white spaces and any remaining comments. 

● second: The source code is split into "tokens" 

● third: syntax checker makes sure that each is a valid construct (The 
majority of the errors that are detectable by the compiler are caught 
here) 

● fourth: The code generator produces the ILC output.

● fifth: the The code optimiser attempts to optimise the ILC



The assembler 
● the assembler creates object files from assembly language source 

files (as)  

● The assembler code is then converted to relocatable object code by the 
assembler. (A relocatable object file can be loaded starting at any location 
in memory)  

● It is then added to all the addresses in the object file, so the object file 
could be loaded into any location in memory by the Unix operating 
system.)

  cc -c -g demo.c
  nm demo.o   
  



Compilation phase compiler flags..
● Try this:

● check man pages to see which flags are available and what 
they do: 
● enforcing strict syntax checking
● looking for un-used variables etc.
● Looking for optimization flags 

  cc -S demo.c  
  less demo.s 



Optimization
● How to make the code go faster
● Classical optimizations

● Dead code elimination – remove useless code
● Common subexpression elimination – recomputing the 

same thing multiple times
● Machine independent (classical)

● Useful for almost all architectures
● Machine dependent

● Depends on processor architecture
● Memory system, branches, dependences



Optimization (2) 
● Compilers do many different transformations 

to produce fast code 
● Some of them could be controlled by flags on 

the command line 
● This is not always straightforward (complex 

inter-dependencies) 
● To increase performance play with flags.. 

( learn a lot about that next lecture...) 
● Check out results are still correct.



Symbol Table
● produced by compiler and used by the linker to find the information 

required to build the whole code. 

● Like a dictionary that records each identifier or keyword found:
● the type (variable, array, procedure, . . . )
● the data type (integer,real, . . . )
● the run-time address pointer to access more information (like 

the bounds of an array, . . . 
● The symbol table is very important for debugging.

● Debuggers use a more complete symbol table with every variable 
listed and references to the source lines where they are modified. 

● This is generally produced with the -g flag.



the linker
● All the different object files are finally glued together by 

the linker. 
● to know about it : man ld (very system specific) 
● Some of Actions it performs: 

● identifies the main routine as the initial entry point when execution begins. 
● resolves subroutine and identifies function calls by putting in the correct 

addresses
● If there are any unresolved symbols it will then try to link in any external 

libraries which have been specified and default ones from the system. 

● The result is an executable file:      

                               a(ssembler).out(put) 



Linker (2) 
● Error messages are printed if there are 

remaining unrsolved symbols. 

● Solution: add the maths library at the end of 
the compilation process:

 cozzini@elcid 1_Compiled_languages]$ cc demo.c
/tmp/ccy4sMiS.o: In function `main':
demo.c:(.text+0x19): undefined reference to `sin'
collect2: ld returned 1 exit status
  

 cozzini@elcid 1_Compiled_languages]$ cc demo.c -lm 
  



Where are the libs? 
● Standard places are searched if you use standard libraries [/usr/lib 

/usr/local/lib/ ..] 
● check out the    /etc/ld.so.conf, LD_LIBRARY_PATH

– define where to search for shared libraries
● Otherwise: explicitly specify the path to the library and the name of 

that library:   -L/Path_to_library -lmpi 
● this refers to a library file called:

– /Path_to_library/libmpi.s (shared) o (bject)  --> (dynamic library)
– /Path_to_library/libmpi.a(rchive) [see ar command]  --> (static 

library )



Static vs Dynamic libraries...
● Dynamic libraries the external reference will not 

be resolved until the code starts running and even 
then the linking will not take effect until an actual 
call is made to the routine requiring that library. 

● Static libraries the actual code to execute the 
external routine will be physically copied into your 
executable. This is the way that linking used to 
always be done.

● There are advantages/disadvantages to both 
methods



Static libraries 
Pro: 

 - Code is more portable/relocatable 

 - It should be more efficient in term of performance 

Issues:
● Symbols are resolved “from left to right”, so circular dependencies 

require to list libraries multiple times or use a special linker flag
● Executable are larger (very minor issue)
● Not always available by default (check your system please) 

NOTE:  When linking only the name of the symbol is checked, not 
whether its argument list matches



Shared Libraries 

● Pro:
● Executable is smaller 
● Standard and easy way to go 

● Cons:
● Not always easy to find out the right combination (see next 

slide) 
● That could be a penalty in performance 



Please name your executable!  

● By default all compiler will produce an 
executable named a.out. 

● You can use a -o flag ( standard for all the 
compiler)  to generate something more 
meaningful .. 

azorka~ 13>gfortran -o my_code.x  my_code.f90 



How to choose a compiler for 
scientific computing? 

● Efficiency
● Does it produce efficient code? 
● Does it produce correct code? 
● Is it able to exploit the hardware? 

● Interoperability 
● Does it operate with other tools/compiler/languages? 

● Utilities / Tools 
● Does it have a Debugger/ Profiler / other utilities? 

● Diagnostic Capabilities 
● Is it able to detected errors/bugs in programs?

● Documentation/ support /training/cost



Gnu compiler collection 
● The Cross-Platform compiler package 
● Supports many OS/CPU combinations 
● Already bundled with Linux distributions
● Support for C/C++/F90 good 
● OpenMP Support 
● Debugger, several GUI frontends
● Profiler, GUI frontends
●  Many additional, supporting tools available


