
How I learned to stop worrying and love good
coding (and version control)
In this hands-on you will take a very simple and ugly code and transform it into a piece of readable, commented and
modular code. Also, you will use git to keep track of all the modification you did.

So let's first create a repo on github. Once this is done, create a local repo

mkdir jacobi
cd jacobi
git init

add the remote repository to the repo list

git remote add origin https://github.com/gbrandino/jacobi.git

Add then a readme.md file. Then

git add readme
git commit -m 'initial commit'
git push -u origin master

For the entire exercise you can either C or python, that are in the corresponding folders

The Laplace problem using Jacobi iterator
The algorithm used in this program solves Laplace’s equation on an evenly spaced grid through the use of a simple Jacobi
iteration technique.

The equation has the form:

A strategy to solve such an equation, given the boundary conditions, is the use of a Jacobi iteration that employs numerical
second derivatives.

To tackle this, we would set up a two dimensional grid to represent the surface, and we will divide it evenly into square
regions. Regarding boundary conditions, we will be setting the bottom left corner to 100.0 and with an increasing gradient
toward the other corners until it is zero. Once these conditions are set, the algorithm will use numerical solutions to the
second derivatives in each direction to update the current matrix elements.

The Algorithm
Here you can find a short description of the algorithm, of which Figure 1 shows a cartoon.

1. Allocate and specify a 2D array defining an evenly spaced grid of square dimension, leaving a space for the
boundaries, as they do not belong to the main grid (i.e. a 1024 x 1024 matrix would need to be allocated as
1026x1026 to leave room for the borders.

2. Setup the initial constant boundary conditions. The value at the lower left hand corner of the of the grid will be fixed
at 100.00, and the value ascending and to the right will be set to a linear gradient reaching zero at the opposite
corners (see Figure 1). The rest of the borders will be fixed at zero. Please note, these boundaries will remain
constant throughout the simulation.

3. Setup the initial condition of the inner grid elements as 0.5.

4. Begin and continue for a fixed number of cycles the iterative process. At each iteration, the value of each inner
matrix element needs to be recomputed from elements of the current iteration. The updating formula, based on
numerical computation of second derivatives, is:

5. After updating, copy the new matrix into the old's memory and continue iterations until completion.

Compile the code

gcc -O2 jacobi.c -o jacobi

and run it

jacobi 10 5

To plot the results, (you will need matplotlib python package)

python plot.py

1 - Basic coding style
First, copy the jacobi_initial.c/jacobi_initial.py file to your repo and put under version control. (git add & git commit).

Now have a look at it. The goal of the first part is to clean it up, enforcing

space between groups of lines
space between elements in a line
indentation,2 or 4 spaces, your choice. Remember to set your editor to expand tabs to spaces (well, in python this
is part of the language...)
80 columns length
a brief explanatory comment at the start of every program/file
comment inside the code to explain non trivial parts

The exercise is rather tedious so, for your convenience you can find the clean up version in the folder solution/1.
Nevertheless, we encourage you to do a little clean up, just to get the hang of it.

Once you are done (or you have copied the solution...) remember to commit and push your changes.

2 - Variable naming and modularity
The second step is to improve further readability and enforce modularity. About the former, the task is to substitute all the
variable names with meaningful names, such that it is clear what they represent. For composite names (such as the one
holding the dimension in byte) you can choose to use underscore (dimension_byte) or camel-case (dimensionByte).

Then, make the code modular, by creating three functions from, respectively

the part that sets the boundary conditions
the part that updates the solution
the part that prints the output

Once again, the solution is given in the folder solution/2

Once you are done, compare the changes with the commited code using

git diff <filename>

3 - Separate in different files
Finally separate the code in different files, having the three functions created before in a different file. In C, this requires the
creation of a header and a source file. In python you will be creating a module. Since we are making a big change to the
code, it may be a good idea to create a new branch and work there

git checkout -b restructuring

The solution is given in the folder solution/3. For the C code, the solution folder contains also a minimal makefile for your
convenience.

Once you are done, you may decide to merge the newly created branch into the master. First switch to master

git checkout master

then merge the restructuring branch

git merge restructuring

