

Outline

● Why documenting?
● Documentation guidelines
● Documentation example

● Compiled code: Doxygen and the format
● Python: docstrings

● Docs as code

Why documenting?

● Documentation: written specifications,
instructions, logic, proof of concept of source
code so it is readable by:
● humans
● machines

Why documenting?

● A contract between callers and implementors.
● We continuously stumble upon it!
● It may be annoying.
● We argue about it!

Why documenting?

● Running out of time!
● Not my responsibility..
● The others do not document. Why should I do it?
● I remember what I am coding!
● We are not Google! (or Microsoft, Pivotal etc.)
● Who is going to read it?
● If I do not document, I shall be irreplaceable.

Why documenting?

● Reminds you of what you code
● Helps in IDE autocompletion functionality.
● Creates a pleasant mood to your code editor /

reviewer / colleague.
● Reduces time spent on helping colleagues understand

your code. – Res ipsa loquitir (the thing itself speaks)

Why documenting?

● Advertises your work (and consequently yourself)!
● Makes your product more competitive to other

products.
● Makes your code suitable for contributing in Open

Source projects.

Documentation guidelines
● Documentation is part of the code!
● Document while writing
● Self-documenting code

– Variable, method, class, package etc. names must be
meaningful

– For very complex code sections, include short comment lines

● Each function/class should come with
– a description of what it does
– the descrption and type of its arguments and return value

Documentation guidelines

● Documentation is a live process. Update or
produce new version of it until the end of
development process

● Documentation is the story of your code
● Documentation reminds you that you write code

first for humans, then for machines

Doxygen

Documentation Generator tools
● Tons of Languages
● Relationships
● Diagrams

http://www.doxygen.nl/

Doxygen

doxygen -g

Important variables
● PROJECT_NAME
● PROJECT_BRIEF
● OUTPUT_DIRECTORY
● GENERATE_HTML

Doxygen – methods

/** Registers the text to display in a tool tip.
 * The text displays when the cursor lingers
 * over the component.
 * \param char* text the string to display.
 * \return int return 0 on success
 */
int setToolTipText(char* text) {

// your code

return 0;

 }

Doxygen – files

/** \file awesome_module.h
*
*
* \authors B.Gates
* \copyright 2019 eXact-lab s.r.l. GPLv2
*/
<your code here>

Doxygen – mainpage

/**
 * \mainpage My wonderful program
* \section intro_sec Introduction
*
* \authors B.Gates
* \copyright 2019 eXact-lab s.r.l. GPLv2
*/
<your code here>

Running doxygen

● doxygen

or
● doxygen <configuration.file>

● Produces an html version and a latex version
● Latex version currently broken on some linux

distributions... (November 2019)
● Example http://www.netlib.org/lapack/explore-html/

Python - docstrings

● Documentation string which is string literal, and
it occurs in the class, module, function or
method definition,

● Docstrings are accessible from the doc attribute
for any of the Python object

● Accessible also with the built-in help() function
can come in handy

Python - docstrings

def some_function(argument1):

 """Summary or Description of the Function

 Parameters:

 argument1 (int): Description of arg1

 Returns:

 int:Returning value

 """

 return argument1

print(some_function.__doc__)

help(some_function)
Summary or Description of the Function
 Parameters:
 argument1 (int): Description of arg1
 Returns:
 int:Returning value

docstrings and doxygen

● Doxygen is able to read docstrings, and
generate documentation from them

● The rendering is not as fancy as using doxygen
tags

● Alternatively, you can use standard doxygen
stynthax, but you loose the help() and .__doc__

Docs as code

Writing, testing, publishing, and maintaining
documentation using the same tools developers
use for software code

Goals Tools
 ❏ Content authoring Text editors➔
 ❏ Formatting, styling Markup languages➔
 ❏ Version control Git, SVN,...➔
 ❏ Issue tracking JIRA, BugZilla,...➔
 ❏ Testing, validation Scripts, linters, spell-checks,...➔
 ❏ Publishing Site builders, CMS, ... ➔

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

