
Stefano Cozzini
CRS – OGS Udine – 26 Novembre 2019
Introduction to scientific computing and programming..

2

What is scientific computing?

 from Wikipedia.com

 Scientific computing (or computational science) is the field
of study concerned with

● constructing mathematical models and (math/physics)

● numerical solution techniques and (numerical analyis)

● using computers (programming)

to analyze and solve scientific and engineering problems.

3

Do you need this course?
How many participants

write shell scripts to analyze each new
data set instead of running those analyses
by hand?

4

Do you need this course?
How many of you

use version control to keep track of their
work and collaborate with colleagues?

5

Do you need this course ?
How many

routinely break large problems into pieces
small enough to be

- comprehensible,

- testable, and

- reusable?

And how many know those
are the same things?

You can skip this course if

● You don't care if anyone else can ever use your
software

● You are sure that people you've never met will
be able to use and modify your software two
years from now

7

A computationally competent
scientist

A scientist is computationally competent if she can
build, use, validate, and share software to:

– Manage and process data

– Tell if it's been processed correctly

– Find and fix problems when it hasn't been

– Keep track of what they've done

– Share work with others
– Do all of these things efficiently

Aims&Goals

● try to explain what software engineering is, how
to apply to scientific computing

● give you some rules of thumb for figuring out
how formal your software development process
should be.

● Present some good practices for scientific
software development

Software engineering

● The term “software engineering” was first used at
a NATO conference in 1968

● chosen to get people thinking about how to build
large, complex software systems

● Scientific codes are not based on software
engineering techniques

● “software engineering” includes project
management

Sturdy vs. Agile
● Two camps currently dominate the debate about software

development
● Sturdy: measure twice, cut once

– Think through users' needs, design, and possible problems before
starting to code

Inspired by traditional engineering (in which late changes are very
expensive)

● Agile: lots of small steps, with continuous testing and refactoring
– "No battle plan ever survives contact with the enemy." (Helmuth von

Moltke)
– They refer to the sturdy camp as Big Design Up Front (BDUF)
– Inspired by open source and 1990s web development

● Differences in practice are much less than the differences in
rhetoric

Boehm's Curve
● Both methodologies are responses to Boehm's Curve

● Sturdy: aim carefully so that problems don't arise
– The cheapest bug to fix is one that doesn't exist

● Agile: continuously correct course
– No point trying to aim at a moving target, and real-world targets always move

What is the best for scientific code?
● Factors affecting choice:

– How well the team understands the problem domain, tools, etc.
– How stable the goals are
– How many people are involved

● If you don't know enough to make long-term predictions
with confidence, use agile
– This means every genuinely new project ought to start agile

● If hundreds of people are involved, frequent course
corrections will be painful
– Though many agile advocates disagree

13

Ten simple rules for development of
scientific software

https://www.software.ac.uk/blog/2016-09-26-ten-simple-rules-open-development-
scientific-software

14

Rule 1: Don't Reinvent the Wheel

● Many fundamental scientific algorithms and
methods have already been implemented in
open-source libraries

● Evaluate them for your needs...
● Providing another solution to a problem, even if

technologically novel, is only an accomplishment
in engineering and rarely suitable for publication
on its own.

15

Rule 2: code well

● Learn the basics of software development and
trick

● Learn by practice: join an existing open-source
project
– Getting familiar with other people's code in this way is

a great way to boost your experience and learn new
techniques.

(more on this during the course)

16

Rule 3: Be Your Own User

● Youtr software should be useful for you: address
important questions in a useful or novel way

● your software should be useful to other
developers, and is not simply a demonstration of
the solution.

17

Rule 4: Be Transparent

● open development allows many eyes to evaluate
the code and recognize and fix any issues, which
reduces the likelihood of serious errors in the final
product.

● Use public repositories (github/gitlab/bitbucket)
that greatly facilitate this kind of team
development approach.

18

Rule 5: Be Simple

● simplicity is fundamental, since potential users will first evaluate
how long it will take to install and get something out of your
software against the time it will take them to find another way.

● Employ standard package or software installation models for as
many platforms as possible.

● Use standard models for creating installable software packages,
● Try to support standard file formats and don't come up with new,

custom formats.
● Spend time to create online documentation, sample data files,

and test cases that will give others an easy start into your
codebase.

19

Rule 6: Don't Be a Perfectionist

● “Release early, release often” (open-source
mantra, and attributed to Linus Torvalds by Eric
Raymond)

● your “customers” will quickly identify problems
and new requirements,

● you will be then able to fix them rapidly

20

Rule 7: Nurture and Grow Your
Community

● Form a team and communicate with the people
who use your tool

● Make it easy for others to contribute ideas and
act on feedback.

● Discuss with the community important changes
● Above all, avoid confusing your users—drastic

differences between each release that introduce
incompatibilities will win no friends.

21

Rule 8: Promote Your Project

● Spend time promoting your project:.
● Appearance matters, and a clean, well-organized

website that will help your cause is not hard to
achieve.

● Keep an eye out for ad hoc developer meetups
and hackathons, where open-source coders get
together to work on one, or many different
projects.

● Promotion is hard work, but through it you will
grow and strengthen your community

22

Rule 9: Find Sponsors

● No matter how large the community around your project and how
efficiently it is developed and managed, some level of funding is
essential.

● Scientific software can be successfully supported through grants,
by writing applications to address new scientific problems through
the development and use of software, or attaching development
and upkeep of software as a deliverable on experimental grants.

● Open development directly addresses the section on
sustainability in grant applications, but the emphasis here has to
be on the community.

● Simply releasing code openly, without support and maintenance,
will not ensure extended value; instead, you need to explain how
you will actively foster your community of users and developers.

23

Rule 10: Science Counts

● the software you write is primarily a means to advance our
research and, ultimately, achieve our scientific goals.

● Open-source development and maintenance is an intensely
social process so it is even more important for scientists to
keep an eye on the big picture, and stay true to our scientific
goals.

● However open-source communities ensure persistence of
projects by allowing project leadership to be shared and
passed to other members.

● This offers you the opportunity to naturally progress to new
challenges with the knowledge that the software you created
will remain available and benefit others.

24

Best Practises in scientific computing..

25

Best Practises in scientific
computing..
● Write programs for people, not computers.

– A program should not require its readers to hold more than a handful of facts in memory at once.
– Make names consistent, distinctive, and meaningful.
– Place a brief explanatory comment at the start of every program.
– Make code style and formatting consistent.

● Let the computer do the work.
– Make the computer repeat tasks.
– Save recent commands in a file for re-use.
– Use a build tool to automate workflows.

● Make incremental changes.
– Work in small steps with frequent feedback and course correction.
– Use a version control system.
– Put everything that has been created manually in version control.

● Don't repeat yourself (or others).
– Every piece of data must have a single authoritative representation in the system.
– Modularize code rather than copying and pasting.
– Re-use code instead of rewriting it.

26

Best Practises in scientific
computing..
● Plan for mistakes.

– Add assertions to programs to check their operation.
– Use an off-the-shelf unit testing library.
– Turn bugs into test cases.
– Use a symbolic debugger.

● Optimize software only after it works correctly.
– Use a profiler to identify bottlenecks.
– Write code in the highest-level language possible.

● Document design and purpose, not mechanics.
– Document interfaces and reasons, not implementations.
– Refactor code in preference to explaining how it works.
– Embed the documentation for a piece of software in that software.

● Collaborate.
– Use pre-merge code reviews.
– Use pair programming when bringing someone new up to speed and when tackling particularly tricky problems.
– Use an issue tracking tool.

27

The essential software tools

● Compiler
● Debugger
● Use Version Control Software (git)
● Use Automated Build Tools

– Makefile / Autotools/ Cmake etc..

● Use a Testing Framework
● Use documentation tools (doxygen etc..)

28

Science Code Manifesto
Software is a cornerstone of science. Without software, twenty-first century science would
be impossible. Without better software, science cannot progress.

But the culture and institutions of science have not yet adjusted to this reality. We need to
reform them to address this challenge, by adopting these five principles:

● Code
– All source code written specifically to process data for a published paper must be available to the

reviewers and readers of the paper.

● Copyright
– The copyright ownership and license of any released source code must be clearly stated.

● Citation
– Researchers who use or adapt science source code in their research must credit the code’s creators in

resulting publications.

● Credit
– Software contributions must be included in systems of scientific assessment, credit, and recognition.

● Curation
– Source code must remain available, linked to related materials, for the useful lifetime of the publication.

Summary

● There is no "best process"
● Choose one based on:

– How well you understand the problem and the technology
– How stable the requirements are
– How big (or distributed) the team is

● Most important thing is that everyone is playing by
the same rules...

● ...and that you adjust the process to reflect reality,
rather than trying to do the opposite

