
Introducing your best friend: Mr. Compiler
In this hands-on you we will briefly explore the role of your compiler that should become your best friend when
programming your scientific problem.

I am gcc, solving problems
Let us start with a very simple compilation of a simple code using the always available compiler on almost all the
machine: the GNU suite and namely gcc

GCC is a key component of so-called "GNU Toolchain", for developing applications and writing operating systems. The
GNU Toolchain includes:

1. GNU Compiler Collection (GCC): a compiler suite that supports many languages, such as C/C++ and Fortran as
well.

2. GNU Make: an automation tool for compiling and building applications.
3. GNU Binutils: a suite of binary utility tools, including linker and assembler.
4. GNU Debugger (GDB).
5. GNU Autotools: A build system including Autoconf, Autoheader, Automake and Libtool.
6. GNU Bison: a parser generator (similar to lex and yacc).

GCC is portable and run in many operating platforms. GCC (and GNU Toolchain) is currently available on all Unixes.
They are also ported to Windows (by Cygwin, MinGW and MinGW-W64). GCC is also a cross-compiler, for producing
executables on different platform.

So let's first check if the compiler is available and which version we have on our system:

on my mac:

>gcc

clang: error: no input files

on my supercomputer:

$ gcc

gcc: fatal error: no input files

compilation terminated.

and which version we have on our system:

on my mac:

>gcc --version

Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --with-gxx-include-

dir=/usr/include/c++/4.2.1

Apple LLVM version 8.0.0 (clang-800.0.42.1)

Target: x86_64-apple-darwin15.6.0

Thread model: posix

InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin

and on my supercomputer:

>gcc --version

gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-36)

Copyright (C) 2015 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Getting help
Help You can get the help manual via the --help option. For example,

>gcc --help

OVERVIEW: clang LLVM compiler

USAGE: clang [options] <inputs>

OPTIONS:

 -### Print (but do not run) the commands to run for this compilation

 --analyze Run the static analyzer

 -arcmt-migrate-emit-errors

 Emit ARC errors even if the migrator can fix them

 -arcmt-migrate-report-output <value>

 Output path for the plist report

 --cuda-device-only Do device-side CUDA compilation only

 --cuda-host-only Do host-side CUDA compilation only

 --cuda-path=<value> CUDA installation path

 -cxx-isystem <directory>

 Add directory to the C++ SYSTEM include search path

 -c Only run preprocess, compile, and assemble steps

You can also read the GCC manual pages (or man pages) via the man utility:

> man gcc

GCC(1) GNU

GCC(1)

NAME

 gcc - GNU project C and C++ compiler

SYNOPSIS

 gcc [-c|-S|-E] [-std=standard]

 [-g] [-pg] [-Olevel]

 [-Wwarn...] [-Wpedantic]

 [-Idir...] [-Ldir...]

 [-Dmacro[=defn]...] [-Umacro]

 [-foption...] [-mmachine-option...]

 [-o outfile] [@file] infile...

 Only the most useful options are listed here; see below for the remainder. g++ accepts

mostly the same options as gcc.

DESCRIPTION

 When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The

"overall options" allow you to

 stop this process at an intermediate stage. For example, the -c option says not to run the

linker. Then the output consists

 of object files output by the assembler.

...

Alternatively, you could look for an online man pages, e.g., http://linux.die.net/man/1/gcc.

http://linux.die.net/man/1/gcc

We finally check where the actual files are...

>whereis gcc

gcc: /usr/bin/gcc /usr/lib/gcc /usr/libexec/gcc /usr/share/man/man1/gcc.1.gz

Compiling and Linking a simple C program
Given the following hello_world.c file:

// hello.c

#include <stdio.h>

int main() {

 printf("Hello, world!\n");

 return 0;

}

Compilation and Linking is simple enough:

gcc hello.c -o hello.x

GCC however compiles a C/Fortran program into executable in 4 steps as shown in the diagram below:

For example, a " gcc -o hello.x hello.c " is carried out as follows:

1. Pre-processing: via the GNU C Preprocessor (cpp) which includes the headers (#include) and expand the
macros (define)

 > cpp hello.c > hello.i

The resultant intermediate file hello.i contains the expanded source code.

2. Compilation: The compiler compiles the pre-processed source code into assembly code for a specific processor.

> gcc -S hello.i

The -S option specifies to produce assembly code, instead of object code. The resultant assembly file is
hello.s

3. Assembly: The assembler (as) converts the assembly code into machine code in the object file hello.o

> as -o hello.o hello.s

4. Linker: Finally, the linker (ld)links the object code with the library code to produce an executable file hello.x

> ld -o hello.x hello.o ...libraries...

Verbose Mode (-v)

You can see the detailed compilation process by enabling -v (verbose) option. For example,

> gcc -v -o hello.x hello.c

Defining Macro (-D)

You can use the -D*name* option to define a macro, or -D*name*=*value* to define a macro with a value. The
value should be enclosed in double quotes if it contains spaces.

>gcc -DDEBUG demo.c - o demo_debug.x

>./demo_debug.x

sin(x) is -0.756802

Useful utilities to check your executable
"nm" Utility - List Symbol Table of Object Files

The utility " nm " lists symbol table of object files. For example,

$ nm hello.o

0000000000000000 b .bss

0000000000000000 d .data

0000000000000000 p .pdata

0000000000000000 r .rdata

0000000000000000 r .rdata$zzz

0000000000000000 t .text

0000000000000000 r .xdata

 U __main

0000000000000000 T main

 U puts

$ nm hello.exe | grep main

00000001004080cc I __imp___main

0000000100401120 T __main

00000001004010e0 T main

......

"nm" is commonly-used to check if a particular function is defined in an object file. A 'T' in the second column
indicates a function that is defined, while a 'U' indicates a function which is undefined and should be resolved by the
linker.

"ldd" Utility - List Dynamic-Link Libraries

The utility " ldd " examines an executable and displays a list of the shared libraries that it needs. For example,

> ldd hello.x

ntdll.dll => /cygdrive/c/WINDOWS/SYSTEM32/ntdll.dll (0x7ff9ba3c0000)

KERNEL32.DLL => /cygdrive/c/WINDOWS/System32/KERNEL32.DLL (0x7ff9b9880000)

KERNELBASE.dll => /cygdrive/c/WINDOWS/System32/KERNELBASE.dll (0x7ff9b6a60000)

SYSFER.DLL => /cygdrive/c/WINDOWS/System32/SYSFER.DLL (0x6ec90000)

ADVAPI32.dll => /cygdrive/c/WINDOWS/System32/ADVAPI32.dll (0x7ff9b79a0000)

msvcrt.dll => /cygdrive/c/WINDOWS/System32/msvcrt.dll (0x7ff9b9100000)

sechost.dll => /cygdrive/c/WINDOWS/System32/sechost.dll (0x7ff9b9000000)

RPCRT4.dll => /cygdrive/c/WINDOWS/System32/RPCRT4.dll (0x7ff9b9700000)

cygwin1.dll => /usr/bin/cygwin1.dll (0x180040000)

Useful flag/tips to help writing clean code
Enable -Wall to show all warnings:

>gcc -Wall demo.c

demo.c: In function 'main':

demo.c:13:8: warning: unused variable 'f' [-Wunused-variable]

 13 | float f=sin(x);

 | ^

Promote warnings to errors to be force to fix them:

>gcc -Wall -Werror=unused-variable demo.c

demo.c: In function 'main':

demo.c:13:8: error: unused variable 'f' [-Werror=unused-variable]

 13 | float f=sin(x);

 | ^

cc1: some warnings being treated as errors

