The GEM's Probabilistic Earthquake Hazard Model of Morocco

Valerio Poggi, Julio Garcia, Richard Styron, Robin Gee

Global Earthquake Model (GEM), Pavia Italy

GEM Global Mosaic of Hazard Models

GLOBAL QUAKE MODEL .ORG

GEM

Seismicity of Morocco

Seismicity of Morocco is moderate, although highly destructive earthquakes are reported from instrumental catalogues, such as the Agadir (1960, Mw 5.9) and Al Hoceima (2004, Mw 6.3) events, which caused respectively about 12000 and 629 fatalities each, and from historical sources (the Fez and Meknes intensity IX events).

Cherkaoui and El Hassani 2012

On-shore seismicity can be grouped in at least two main seismic provinces of the Atlas and the Betic-Rif structural domains.

Off-shore seismicity is predominantly located in the Atlantic along the Azores-Gibraltar shear belt and in the Aboran Sea.

North Africa Homogenized Earthquake Catalogue

Source Model - Regional Seismicity Analysis

GLOBAL QUAKE MODEL .ORG

Occurrence Rate Redistribution

Distributed seismicity is modelled combining a smoothed seismicity approach with the use of source zonation. Such approach allows for spatial variation of source properties, such as b-values, faulting style and hypocentral distribution.

Global Active Fault Database

- New database of active faults from Morocco to Sinai
- 143 structures mapped from literature, satellite imagery, topography, seismicity
- Slip taken from literature or estimated from GPS
- Public and open-source (Creative Commons Attribution license)

Tectonic Regionalization using Fuzzy Logic

Merging information from:

- Seismicity (magnitude)
- Smoothed Moment rate
- S-wave velocity
- Q_{LG} distribution

Chen et al. 2017

GMPE Selection and Logic-Tree Approach

Given the peculiar seismoteconic setting of the North Africa, an **hybrid attenuation behavior** might be expected. Four suitable GMPEs have been selected:

- 1 Chiou & Youngs (2014)
- 2 Akkar et al. (2014)
- 3 Atkinson & Boore (2006)
- (4) Pezeshk et al. (2011)

- → Active Shallow Crust (Group A)
- → Stable Continental Crust (Group B)

GLOBAL QUAKE MODEL .ORG

GMPE Selection – Comparing Ground Motion

GLOBAL QUAKE MODEL .ORG

ESM Engineering Strong

Event id	Date	Mw	ML	Style of faulting	Stat. Code	EC8	R epi. [km]	Processing	Corr. PGA [cm/s ²]	PGV [cm/s]	Location	Instrument
EMSC-20160125_0000009	2016-01-25 04:22:03 🔗	6.3	5.7	Strike-slip faulting	WM.AVE 🥏		430.700	manually processed	0.877	0.312	00	HL
EMSC-20140415_0000028	2014-04-15 07:56:47 🔗		4.2	Unknown	WM.AVE 🥔		217.700	manually processed	0.466	0.032	00	HL
EMSC-20120218_0000001	2012-02-18 00:28:27 🔗		4.1	Strike-slip faulting	WM.AVE 🥏		208.100	manually processed	0.408	0.017	00	HL
EMSC-20140512_0000020	2014-05-12 03:53:20 <i>&</i>		3.5	Unknown	WM.AVE 🥏		157.100	manually processed	0.193	0.008	00	HL
EMSC-20130414_0000075	2013-04-14 21:43:15 <i>2</i>		4.3	Unknown	WM.AVE 🥏		214.900	manually processed	0.091	0.006	00	HL
EMSC-20111226_0000066	2011-12-26 04:33:54 🔗		3.6	Unknown	WM.AVE 🥔		211.600	manually processed	0.035	0.002	00	HL
EMSC-20111224_0000354	2011-12-24 14:15:52 🔗		4.1	Unknown	WM.AVE 🤗		70.900	bad quality record			00	HL
EMSC-20131216_0000017	2013-12-16 07:06:20 <i>2</i>	4.7	4.8	Strike-slip faulting	WM.AVE 🥔			bad quality			Franja	

1 station in Morocco: 8 Events available (6 usable) 2 stations in Algeria: 2 Events

Need data from local agencies (e.g. CRAAG) or neighboring countries

Calculation Results: Hazard Maps

Calculation Results: Uniform Hazard Spectra

10% POE in 50 years

GLOBAL QUAKE MODEL .ORG

GEM

Model Verification: Stochastic Event Set

- Stochastic earthquake catalogue for a 10.000 years investigation time
 - About 815.000 ruptures with Mw>4.5
 - Only sources relevant for Morocco have been considered
 - Sampling of the full logic-tree

Outlook

The Morocco hazard model is presently derived from the regional PSHA Model of GEM for Northern Africa, which is part of the GEM's global mosaic.

Nonetheless, the model can be further improved by:

- better selection of existing GMPEs through the use of empirical data
- implementation of a local GMPE
- Integration of new information on active faults and local GPS data
- site-specific seismic hazard analysis

