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Figure 8.11 Close-Up of MVDL Estimated Dispersion Curve
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Figure 8.12 Passive Source MUSIC f-k Power Spectrum Estimate at 24.5 Hz. The
MUSIC method estimated a phase velocity of 181.86 m/sec. The noise
subspace dimension equals 15 in this case.
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Figure 8.13 Mesh Plot of MUSIC f-k Estimate at 24.5 Hz with a Noise Subspace
Dimension Equal to Fifteen
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Figure 8.14 Passive Source MUSIC f-k Power Spectrum Estimate at 24.5 Hz with a
Noise Subspace Dimension Equal to Eight
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8.4.4 Comparison of Estimators
MUSIC exhibits the best results for the 185 site presented, exhibiting narrower
signal related peaks and less scatter over a wide range of frequencies. Therefore, utilizing
only the noise subspace yielded better wavenumber estimates than using the entire inverse
gpatiospectral correlation matrix. The FDBF was shown to be a viable estimator of passive
surface wave phase velocities. Linear prediction did not yield acceptable phase velocity
estimates, which is not completely unexpected due to the limitations discussed in Chapter 4.

8.4.5 Multiple Signals
Multiple signal arrival or multiple modes may affect the phase velocity estimate,
especialy when the signal spacing in the wavenumber domain becomes close. Figure 8.17
shows an example FDBF power spectrum estimate containing multiple signals. The power
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Figure 8.15 MUSIC Dispersion Curve Estimate
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estimate spreads out along the circle related to the site-specific natura wavenumber.
Sidelobes become important in multiple signal wavefields, since the sidelobes may reinforce
to yield spurious peaks.

8.4.6 Direction of Arrivals

Spatia stationarity of the source location is an important consideration in passive
surface wave analysis. In the active test, the source location is fixed, allowing a priori
knowledge of propagation direction. In the passive test, the signal may change direction
and range as a function of frequency and time. Figure 8.18 shows the vector direction of
arrival of the dominant signal as a function of frequency at the 185 site. The direction of
arrival is given by the peak wavenumber (ky, ky) values. Although the direction changes at
different frequencies, the consistent direction for frequencies in particular rangesis
excellent. The higher frequency energy, about 15 to 50 Hz, are due to the highway traffic,
while the lower frequency energy probably propagates from a different energy source.
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Figure 8.16 Close-Up of MUSIC Estimated Dispersion Curve
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Figure 8.17 Example of Multiple Signals Arriving at a Frequency = 9.875 Hz.

8.5 Material Attenuation Estimation

Two passive surface wave attenuation estimation methods, analogous to the active
attenuation estimation methods, are introduced. The least-squares fit of a plane uses the
displacement magnitudes measured across the array to determine a minimum wavenumber
attenuation estimate. The use of sub-arrays alows estimation of the dominant mode
attenuation coefficients. In the least-squares fit of a plane, the noise background is removed
using the minimum eigenvalue of the spatiospectral correlation matrix.

8.5.1 Least-Squares Fit of a Plane
L east-squares fitting a plane to the displacement magnitudes uses the following
linear algebra equation

Aa=Db (8.4)
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Figure 8.18 Direction of Arrival of Dominant Energy Signal as a Function of Frequency

where the matrix A isthe same for al frequencies and equals

[ON

X1 Y1

A=€2 Y2 85)

> (D> CD>)<CD)

e e E

e :
&s VYs
where x and y = the sensor position on the x-axis and y-axis for the sensor given by the

subscript, and the column of ones is used to determine the regression intercept. The vector
b = the displacement magnitudes as a function of frequency
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Figure 8.19 Least-Squares Fit of a Plane to Spatial Array Displacement Magnitudes

b(w) =[s;w) [SW)| - [Ssw)]" (8.6)

where S(w) = the displacement magnitude at the subscripted sensor index, for sensors=1to
S, and the vector a = the regression parameters as a function of frequency

aw) =layw) ayw) Fw)' (8.7)

where ay(w) and ay(w) equal the attenuation coefficient in the x and y-axis directions for
the frequency w and F(w) = the regression intercept.

To solve the least-squares problem, multiply both sides of Equation 8.4 by the
Hermitian transpose of the matrix A
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APaa =AMp (8.8)
and rearrange by taking the inverse of the left-side inner-product ARp, yielding
a=A"a)"1Aa ) (8.9)

where a = the objective function of the minimization of the error as a function of frequency.
The background noise power is removed by subtracting the square root of the smallest
eigenvaue of the spatiospectral correlation matrix from the displacement magnitude
estimates, since from eigenanaysis, the minimum eigenvalue equals the noise power.

Figure 8.19 shows the attenuation coefficient estimated from fitting a plane to the
noise corrected displacement magnitudes at a frequency = 24.875 Hz. Figure 8.20 shows
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Figure 8.20 Attenuation Curve from Least-Squares Fitting a Plane to Measured
Magnitudes
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Figure 8.21 Orthogona Sub-Array Projection Material Attenuation Estimation Method

the attenuation curve estimated from fitting a plane to the displacement magnitudes at all
frequencies. The attenuation coefficient estimates follow expectations. To estimate
attenuation below 20 Hz, larger array dimensions must be used.

8.5.2 Sub-Array Orthogonal Projection Method

An additional method, which offers the greatest future potential with the deployment
of more sensors, larger arrays, or more efficiently designed sub-array geometries, isthe
orthogonal projection sub-array method. The sub-array method is analogous to the active
attenuation sub-array method, and the orthogonal projection allows the sub-arrays to be
aligned along the direction of propagation. The optimization problem uses Equation 8.4,
except only a single attenuation parameter for each frequency is sought.

After determining the direction of propagation, the sensors are projected onto the
axis of propagation for a given frequency with the following equation
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Figure 8.22 Attenuation Curve from Orthogona Sub-Array Projection Method

k Tx
p(k) =k —= (8.10)
k 'k
where
— T
P(K) = [X1, projected (K) X2, projected (K)  *** X3 projected (K) (8.11)

egual s the sensor locations projected onto the axis of propagation, and
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x=€2 Y20 (8.12)

equal the x and y-axis sensor locations for sensors=11t0 S.
The projection problem is equivaent to the problem defined by Equation 8.4.
Defining a projection matrix P

.
P(k) = @ (8.13)
k Tk

the projected sensor locations equal
p(k) = P(k)x (8.14)

See Strang (1993) for more details concerning projection and minimization of error with
linear algebra

After projection of the measurements onto the axis of propagation, the attenuation
coefficient is estimated in the same procedure as for the active source sub-array method.
Figure 8.21 shows the orthogonal sub-array projection method for frequency = 24.875 Hz,
and Figure 8.22 shows the attenuation coefficients for frequencies between 20 and 50 Hz
estimated with five sub-arrays of eleven sensors. Remova of ambient seismic noise yielded
poor attenuation estimates in the sub-array method, probably due to less ability to properly
estimate the small magnitude eigenvalues with the smaller array.

8.5.3 Discussion
Fitting a plane to the displacement magnitudes yielded excellent attenuation

estimates, although the procedure does not filter competing signals. The ability to remove
ambient noise energy with the smallest eignevalue estimate allows better attenuation
estimates in stationary noise environments. Although the sub-array method did not yield
improved estimates in this case, the sub-array method offers the greatest potential for
passive multimode attenuation estimates. The sub-array method is able to reduce the effects
of competing signals, and when larger dimensions and optimized sub-arrays are deployed,
the method should yield better estimates.

8.6 Signal Modeling

Figure 8.23 shows the match of the experimentally measured data projected onto the
axis of propagation, i.e. aong the direction of the dominant wavenumber, with the
estimated attenuation coefficient for frequency = 24.875 Hz. Notice the sinusoida nature
of the spatial disturbance and the nice fit of the estimated wavelength and attenuation.
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Figure 8.23 Signal Modeling Using Estimated Wavelength and Attenuation for Frequency
=24.875Hz.

8.7 Summary and Conclusions

The primary advantage of passive surface wave anaysisis the plane wave nature of
the measurements. As discussed in Chapters 6 and 7, the model incompatibility of
traditional active source estimators has caused a tremendous amount of confusion in
engineering analysis of seismic surface waves. The passive wave analysis problem mitigates
the near-field and model incompatibility problems when measurements are conducted in the
far-field.

The MUSIC and FDBF methods yield the best dispersion curve estimates, with
MUSIC having narrower signal related peaks. MUSIC, FDBF, and MVDL all yielded
similar dispersion curve estimates, but MVDL had more scatter at lower and higher
frequencies. The passive dispersion curve estimators appear to isolate severa modes,
especialy at higher frequencies, and larger array dimensions will allow greater resolution at
lower frequencies. The linear prediction method did not yield good phase velocity estimates
in the passive source problem.
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Two passive attenuation coefficient estimators were introduced. The methods are
analogous to the active source attenuation estimators discussed in Chapter 7. Least-squares
fitting a plane to the noise corrected displacement magnitude yielded excellent results, and
the resulting attenuation coefficient estimate corresponds to the smallest wavenumber in the
wavefield. Although the orthogonal sub-array projection method did not yield superior
results in this case, the sub-array method offers the greatest potential for future passive
attenuation coefficient estimation.
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