7 Active Qurface Wave Attenuation Estimation

“Think as | think,” said a man,
“Or you are abominably wicked;
You are atoad.”

And after | had thought of it,
| said: “I will, then, be atoad.”

Stephen Crane

7.1 Introduction

The ability to estimate correct attenuation coefficients impacts the ability to reliably
invert adamping ratio profile. This statement has meaning at two levels. First, attenuation
estimates at individual frequencies affect the inverted damping ratio profile at depths
proportional to that frequency-specific wavelength. Second, just as in phase velocity,
attenuation coefficients stem from a convolution of the material damping ratios from the
surface to a depth proportional to the wavelength, weighted by an eilgenfunction, and
therefore, attenuation estimates at a specific depth depend on the material damping
properties from the surface to that depth. Consequently, misestimating the attenuation
coefficient over arelatively small range of frequencies or wavelengths, for example 10 to 20
m, will impact the damping ratio profile estimate over alarger range of depth, since the
attenuation coefficient at depths greater than 20 m include contributions from the material
properties at depths of 10 to 20 m.

Similar to phase velocity estimation, traditional material attenuation estimators
suffer several major limitations. Several of the mgor problems commonly associated with
the experimenta determination of attenuation are discussed. This chapter then discusses the
physics of wave attenuation. The same genera equation governs energy attenuation in both
cylindrical and plane wavefields, and the introduction of the genera wave attenuation model
will allow an easier trangition to the passive attenuation estimation methods introduced in
Chapter 8. Next, the optimum sub-array cylindrical, dominant mode attenuation estimator
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isintroduced and applied to the ISC ' 98 experimenta data. Building on the dominant mode
attenuation derivation, multiple mode sub-array attenuation coefficients are then estimated
for the ISC 98 site.

7.2 The Categories of Traditional Attenuation Estimation Limitations

Traditional geotechnical attenuation estimates have suffered from three major
limitations:

1.) Incorrect physical and geometric spreading model,

2.) Inability to remove noise optimally,

3.) Inability to introduce and account for multiple modes.
The model incompatibility represents the greatest impediment to improving attenuation
estimates and has produced an unnecessarily complicated attenuation model. The inability
to remove noise optimally introduces varying noise power into the attenuation estimate, and
the inability to account for multiple modes leads to incorrect attenuation estimates.

7.3 The Physics of Seismic Wave Attenuation

The same genera equation governs wave propagation in cylindrical and plane
wavefieds, which means the two motions can be modeled by identical parameters. The
parameters include the amplitude, wavenumbers, and a complex-scaling model. The
cylindrical and plane wave attenuation estimators must be considered separately due to a
difference in the experimentally relevant parameters in each case. The general equation will
be introduced, and then the relevant parameters for the cylindrical wave model will be
discussed. Chapter 8 discusses the relevant plane wave parameters.

7.3.1 Genera Wave Motion Model
A single surface wave propagating with a single frequency and single wavelength in
a dissipative medium can be described with the following equation:

u(k,x,w,t) = Ag(k,wye 2K WxeMp i ) (7.2)

where u(k,x,w,t) = the measured displacement at spectral components k and w and at vector
position x and timet, Ag = initial amplitude of the propagating wave, a = the materia

attenuation coefficient, e = harmonic time dependence, and R(k,x) = acomplex-vaued

scaling function, which includes phase and geometric spreading information.

The important features of the model include the following:

1.) Materia attenuation a - The attenuation of wave energy in averticaly
heterogeneous soil profile is a material parameter that is afunction only of
frequency and wavenumber,

2.) Governing geometric model R (R for Rayleigh) - Depending on the geometry of
the problem, i.e. either plane wave or cylindrical, R equals a complex
exponentia or Hankel function solution to the plane or cylindrical wave
eguation, respectively, evaluated at the argument (K,x),
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3.) Amplitude Ag - The wave amplitude at some reference position xo and reference
time to.
If multiple waves are present in the wavefield, superposition sums yield the model of the
motion. The dependence of the geometric model R and material attenuation on frequency
and wavenumber displays an intimate relationship with the dispersion relation. To allow
clear insight into the nature of the materia attenuation estimates, especially for the
dominant mode, the derivations will consider only single signal wavefields.

7.3.2 Overview of Material Attenuation with General Model
Using the general model and two reference points along a linear axis, consider a

single wave propagating with a single amplitude A at a single frequency wp, single
wavenumber ko, and single attenuation coefficient ag. Since the motionisat asingle
temporal frequency, and using afixed reference time, the dependency on the temporal
motion characteristics can be suppressed, alowing focused attention on the spatial
properties of the model. If material attenuation equals zero, the displacements u measured
at the two positions x1 and x, along the linear axis, where x1 is closer to the signal source,

equal

u(ko,x1) =Ag(ko)R(kg,x1) 72)
u(ko,x2) =Ap(ko)R(ko,X2) '
where the motion u is complex-valued, the real-valued part corresponding to the actual
motion, and the function R yields a complex-valued scaling of the amplitude Ag, i.e. a
change in the magnitude and phase of the motion. The complex-valued scaling factor
between the two positions x1 and x» is given by

u(ko,x2) _ Ao(ko)R(ko,x2) _ R(ko,x2) (7.3)
u(ko,x1) Ag(ko)R(Kg.X1)  R(kg,x1)

For a plane wave, the amplitude Ag would not decay, but the phase of the motion would
change as the wave propagated from point 1 to 2. For a cylindrical wave, the function R
determines the phase change and the geometric spreading of the energy, and therefore, the

amplitude A would decrease as the wave propagates from position 1 to 2. If the positions
x1 and X2 happen to be in the far-field of a cylindrical wavefield, the decay rate will tend to
J/Dx , where Dx = the change in distance from position 1 to 2.

Introducing material attenuation into the model, the displacements at X1 and x» equa

u(ko,x1) =Ag(kg)e 3K X1R(kq,x1)

(7.4)
u(ko,X2) = Ag(ko)e 2KIX2R(kg,x5)
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The complex-valued scaling of motion between position x1 and X, now equals

ulko,x2) _ Ao(ko)e ® *P2R(ko.Xa) _ - fatko)ixs x] RK0:X2) 79
u(ko,X1)  Ag(kg)e @ KoXiR(kg,xq) R(ko.X1)

Notice the original wave amplitude Ag aways cancels out, indicating the relative nature of
materia attenuation. Considering Equation 7.5 as afilter or linear system places the
attenuation problem into a more common perspective. The output u(x2) equals the input

u(xy) scaled by a complex-valued filter coefficient defined entirely by the wavenumber and
attenuation coefficient, and therefore, the following equation represents the site transfer
function

u(xz) _ e a(Xz-xy) R(ko,x2) (7.6)
u(xq) R(ko,X1)

R(ko,X2)
R(kg,X1)
specific wavenumbers, and therefore, is a function of the same parameters as the dispersion

curve, i.e. wavenumber and frequency. In plane wave analysis, geometric spreading will not

R(ko,X2)
R(ko,X1)
in the functions R(k,x) represents the only physica model difference in materia
attenuation estimation for the plane and cylindrical wave cases.

The function eguals the phase change and geometric spreading due to the site-

be afactor, yielding a =1 for all frequencies and wavenumbers. The difference

7.3.3 Cylindrical Wave Motion Model
Cylindrical wave motion emanating from an active point source follows the
following model:

UKy, X, W, t) = Ae” 2KeWX (e x) (7.7)

where, since the disturbance is symmetric around the source, the motion is parameterized
by the scalar wavenumber kx. The function R(k,x) equals a Hankel function in this case.

In all the analyses included in the following sections, time is removed as a factor because the
wave motion isviewed at afixed time.

The important properties of thismodel, vis a vis the passive plane wave problem,

include the following:

1.) The geometric spreading of cylindrical waves is parameterized solely by the site
characteristic wavenumbers ky at frequenciesw. Therefore, the wavenumber
contains information about velocity, direction, and geometric energy spreading,

2.) The zeros of the displacement function across space are unequally spaced.
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The complex-valued scaling of the amplitude between any two points on alinear
axis from the source becomes, suppressing temporal frequency and temporal dependence,

Ulky,X2) _ Ao 2 Ho (k. X2) _ - [tk )ce- x0] HolkoX2) (4
~ Age kX ) Ho(K |

u(kx,X1)  Age” KXk, xq) o(Kx.x1)

The use of the model in Equation 7.8 will allow optimum estimates of the dominant mode

attenuation and extraction of multimode attenuation coefficients.

7.4 Noise Remova or Minimization

In traditional attenuation estimates, the background seismic noise has not adequately
been considered. The typical noise removal techniques do not minimize noise power in any
optimizing fashion, and in nonstationary noise environments, the noise removal techniques
increase uncertainty in the estimates. This section discusses the effects of noise inclusion
and possible noise removal dternatives.

7.4.1 Stationary Noise Inclusion L eads to Conservative Attenuation Estimates

If the background seismic noise field exhibits stationary statistics at each frequency
of interest, inclusion of the noise in the estimation process leads to conservative (i.e. too
low) material attenuation estimates. Consider a simple plane wavefield example, consisting
of asingle wave with amplitude = 10 at position x; = 0 m, and amplitude = 8 at position x>
=10 m. Assume a stationary background noise field is also present in the measurements,
where the noise measured at the two locations is independent, identically distributed white
Gaussian noise, and the spectral amplitude of the noise = 3 at the frequency of interest.
Viewing attenuation as the relative decline of energy between two points, referenced by the
origina amplitude, the attenuation coefficients for the include noise and remove noise cases
are the following:

Include Sationary Noise:
A1(Sgnad + Noise) - A, (Signal + Noise) _ (10+3)- (8+3) 23 _
A1(Signal + Noise) 10+3 13

. 0.15
Attenuation (Signal +Noise) = 10—m =0.015 (I/m)

0.15

Remove Sationary Noise:
Ay(Signd) - Ap(Signa) _ (10)- (8) _ 2 _
A1(Sgnd) 10 1

Attmuation(ggnd) = ]_(())—rzn =0.020 (/m)

0.20

172



Advanced Sgnal Processing Methods Applied to Engineering Analysis of Seismic Surface Waves
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Figure 7.1 Energy Decay in Cylindrical Wavefield for Various Wavenumbers. The
geometric energy decay in acylindrical wavefield, i.e. for aBessel function
solution, is shown for wavenumber = 0.01 rad/m (thick line), 0.1 rad/m (solid
line), and 1 rad/m (dashed line).

In this case, a higher attenuation estimate results from removing noise. The
nonstationary noise power case introduces the possibility of increasing energy as a function
of distance. The smple example frames the discussion regarding the effects of trying to
correct noisy measurements. The traditional methods of noise correction increase the
estimate uncertainty under certain circumstances, which has undesirable consequences on
the inverted damping ratio soil profile.

7.4.2 Advanced Noise Removal Methods
Advanced noise removal, estimation, and cancellation techniques exist in advanced
digital signal processing. Adaptive noise cancellation in nonstationary environments
represents the optimum solution, especiadly in active seismic surface wave testing due to
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complete control over the source characteristics. Noise reduction for active surface wave
measurements must consider the two following problems:

1.) Competing signals,

2.) Ambient, background seismic noise.
Reduction of the effects of competing signals depends on sub-array analyses, and the effects
of the competing signals are reduced to the extent that the sub-array spatial filter has good
sidelobe and mainlobe characteristics. Reduction of ambient, background seismic noise
present in al sensor measurements represents a separate problem. The reduction of both
types of effects are discussed in Section 7.6.

7.5 Material Attenuation in a Cylindrical Wavefield
Geometric spreading of energy is controlled by al the wavenumbers present in the

wavefield. The v/x decay rateis only an approximation. Once geometric spreading is

Displacement Magnitude
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Figure 7.2 Cylindrical Wavefield Solution Versus the Far-Field, +/x Model. The
cylindrical, Bessal function solution for wavenumbers = 0.01 rad/m (dark,

thick line) and 1 rad/m (solid line), and the far-field, Jx decay solution
(dashed-dot line) are shown.
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removed, shorter wavelength modes control amplitude oscillations around the longest
wavelength mode. This section will discuss the cylindrical wavefield model and Section 7.7
will discuss the effects of the model incompatibility.

7.5.1 Geometric Spreading
Geometric spreading of cylindrically propagating Rayleigh surface wavesis
completely determined by the wavenumbers present in the wavefield. Different
wavenumbers decay at different rates, explaining the previously perceived deviation from
the v/x decay rate (Lai, 1998). Figure 7.1 shows the decay of energy of acylindrical
wavefield, parameterized by various wavenumbers with equal amplitudes, in a medium with
no materia attenuation. Lower wavenumbers decay less rapidly than larger wavenumbers,
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Figure 7.3 Multiple Mode Cylindrical Wavefield Superposition. The multiple mode
normalized motion for a cylindrical wavefield containing wavenumbers equal
t0 0.01, 0.1 and 1 rad/m, with amplitudes equal to 3, 2 and 1, respectively, is
shown with the solid line. The dominant mode wavefield decay is shown for
reference with the dashed line. Notice that the decay rate of the dominant
mode and the superposed wavefield differ.
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all wavenumberstend to a +/x as the distance from the origin increases, and the larger
wavenumbers tend to the +/x decay rate more quickly than smaller wavenumbers.

To place the far-field, Jx decay rate in perspective, Figure 7.2 shows the
cylindrical solution for two wavenumbers and the Jx solution for equal amplitude waves.
The V/x decays more rapidly than the cylindrical wavefields near the source, and for the
distance shown in the figure, neither cylindrical wavefield has reached the Jx decay rate.
Section 7.7 will compare the cylindrical and far-field, +/x solutions more completely.
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Superposition of Multiple Cylindrical Modes. The motion for a cylindrically
spreading wavefield containing three modes (thick, solid line) with
wavenumbers and amplitudes in the upper right corner is shown. The
wavefield for single cylindrical wavenumbers equal to 0.01 rad/m (solid line),
0.1 rad/m (dashed line), and 1 rad/m (dashed-dot line) are shown for
reference. Notice that the wavelengths corresponding to the larger
wavenumbers control the oscillation around the lowest wavenumber.
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7.5.2 Modal Magnitude Superposition

Superposition of Bessel functions displays several important qualities. First,
although dominated by the dominant wavenumber, geometric spreading of energy isa
function of all modal wavenumbers present in the wavefield. Second, in magnitude
measurements, shorter wavelengths control the oscillation of the measurements around the
longest wavelength mode. This section will discuss these two major qualities in detail,
offering figures to aid in the visualization of cylindrical wavefields.

Figure 7.3 shows a multiple mode, cylindrical wavefield, with the dominant mode
wavenumber shown for reference. The superposed motion shows a different decay rate
than the dominant mode. Additionally, the superposed motion shows an oscillatory
character. Figure 7.4 shows a closer view of the oscillation of a multimodal, cylindrica
wavefield. The oscillations around the longest wavel ength mode are controlled by the
shorter wavelength modes. The difference in the decay rates for site-specific layered soil
profilesis explained by the difference in the site-specific wavenumbers.

Figure 7.5 shows the progression of cylindrical wavefield displacement magnitudes
as the dominant mode changes from wavenumber = 0.01 rad/m to wavenumber = 0.1 rad/m.
Figure 7.5 (a.) shows the displacements in a wavefield dominated by a wavenumber equal to
0.01 rad/m. The decay of the motion completely follows the dominant wavenumber. As
the relative amplitude of the second wavenumber = 0.1 rad/m increases, the motions begin
to oscillate, but the dominant wavenumber still tends to control the decay of energy, as
shown in Figure 7.5 (b.). Figures7.5 (c. to f.) show the progressive change in the wavefield
as the dominant wavenumber changes from 0.01 rad/m to 0.1 rad/m. When the
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Figure 7.5 (a and b.) Progression of Cylindrical Wavefield Displacement as Dominant
Mode Changes from Wavenumber = 0.01 rad/m to Wavenumber = 0.1 rad/m.
In al figures, the decay for wavenumbers equal to 0.01 rad/m (light, solid
line), 0.1 rad/m (dashed line), and the superposed wavefield (dark, solid line)
are shown.
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Figure 7.5 (c. tof.) Progression of Cylindrical Wavefield Displacement as Dominant Mode
Changes from Wavenumber = 0.01 rad/m to Wavenumber = 0.1 rad/m. Inal
figures, the decay for wavenumbers equal to 0.01 rad/m (light, solid line), 0.1
rad/m (dashed line), and the superposed wavefield (dark, solid line) are shown.

wavenumber 0.1 rad/m dominates, the energy decreases at a greater rate than when a
wavenumber of 0.01 rad/m dominates.

7.6 Attenuation Coefficient Estimation
To obtain optimum attenuation coefficient estimates, geometric spreading must be
removed with the correct physical model. Removing geometric spreading becomes a
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normalization using the combined effects of the wavenumbers estimated in Chapter 6. After
removing geometric spreading, a limiting attenuation coefficient, corresponding to the
smallest wavenumber as function of frequency, can be estimated. Modal attenuation
coefficients for the modes containing the dominant and second greatest energy are also
estimated using sub-arrays. The attenuation coefficients are estimated for the ISC 98 site.

7.6.1 Geometric Spreading Removal
After determining the dispersion relation, the experimentally measured complex-
valued displacements can be normalized to remove geometric spreading effects. 1f u(w,x)
are the complex-valued experimental measurements, the normalized displacements equal
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Figure 7.6 Experimental Measurements from 1SC '98 Site Normalized for Cylindrical
Wavenumber Geometric Spreading. The displacement magnitudes (dashed
lines) for severa frequencies have been normalized by the geometric spreading
due to the two wavenumbers containing the greatest energy (solid lines).
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u(w, x)

Unormalized(W: X) =5

a Am(K)R(Kk,x)

m

where é A (k)R(k,x) equalsthe summation of the function R(k, x) , weighted by the

m

(7.9)

moda amplitudes A, over the m cylindrical modes present in the wavefield at the
frequency w. The modal functions R(k,x) and their amplitude ratios are determined
experimentally and used to normalize the experimental measurements.

Figure 7.6 shows the displacement magnitudes for the experimental measurements
and with geometric spreading removed. Geometric spreading was removed by using the
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Figure 7.7 1SC '98 Attenuation Coefficient Estimates from Least Squares Fitting the
Geometric Spreading Normalized Displacements
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two wavenumbers containing the greatest energy and their amplitude ratios, as estimated in
Chapter 6. Two notable features of the corrected displacements are the following:
1.) The normalized displacement magnitudes increase near the source due to the
creation of multiple surface wave modes,
2.) The corrected displacements become more linear, similar to plane wave motion,
due to the removal of the cylindrical spreading effects.

7.6.2 Minimum Wavenumber Attenuation Coefficient Estimation

Recall that the superposition of modes yields a magnitude measurement with the
shorter wavelengths (larger wavenumbers) oscillating around the longest wavelength
(shortest wavenumber). If the measurements cover alarge enough spatial distance to alow
complete orthogonality of the multiple modes, least squares fitting aline to al the
normalized displacements yields an attenuation coefficient that corresponds to the minimum
wavenumber. Figure 7.7 shows the attenuation coefficient estimated at four frequencies.
Almost sinusoidal oscillation around the main trend is evident.

The attenuation curve from this estimation technique is shown in Figure 7.8. The
waviness at the lower frequenciesis probably due to varying amounts of orthogonality and
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Figure 7.8 1SC '98 Attenuation Curve Estimate from Least Squares Fitting the Geometric
Spreading Normalized Displacements
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multiple modes. The large deviation near 55 Hz corresponds to the resonance effect
observed in Chapter 6. The attenuation estimate from this method suffers several
limitations. Firgt, the estimate does not filter competing signals or remove ambient seismic
energy. Some natural orthogonality reduces the effects of competing signals arriving from
off-axis directions, since their wavelengths differ from the wavelength along the axis of the
array. Second, the method does not explicitly account for multiple modes. The
orthogonality between the longest and shorter wavelength modes relies on a large enough
gpatia distance to alow the orthogonality to develop. Since the spatial window and
number of samplesis limited, multiple modes and the sensor locations affect the attenuation
estimate. Due to noise inclusion and incomplete filtering of competing signals, the
attenuation coefficient estimated from a limited number of samples may not correspond to
the minimum wavenumber.
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Figure 7.9 Dominant Mode Attenuation Coefficient Estimates Using 9 Sensor Sub-Arrays

182



Advanced Sgnal Processing Methods Applied to Engineering Analysis of Seismic Surface Waves

7.6.3 Sub-Array Estimation of Dominant M ode Attenuation

The use of sub-arrays alows a decrease in the impacts due to competing signals.
See Johnson and Dudgeon (1993) for an introduction of the use of sub-arraysin spectrum
estimation. The use of sub-arrays creates afilter to attempt to block out competing signals,
but does not reduce the ambient noise power in the estimate. A method to remove
stationary noise will be presented in Section 7.6.5.

The dominant mode, sub-array attenuation coefficient estimates for several
frequencies are shown in Figure 7.9. Nine sensor sub-arrays were used for the estimates.
The sub-array amplitude estimates fit alinear trend, especially at the higher frequencies.
The lower frequency estimates have a more sinusoidal nature due to a weaker orthogonality
for the longer wavelengths at those frequencies. Figure 7.10 shows the dominant energy
mode attenuation curve estimated with the sub-array method. The break to a different
mode at about 45 Hz matches the trend seen in the dispersion curve estimates of the
previous chapter.
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Figure 7.10 Dominant Mode Attenuation Curve Obtained from Sub-Array Estimation
Method
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7.6.4 Sub-Array Estimation of Multimodal Attenuation Coefficients

Due to the ability of sub-arraysto estimate power contained in individual
wavenumbers, multiple mode attenuation coefficients can be estimated. Figure 7.11 shows
the attenuation coefficient estimate for the mode with the second greatest energy content at
severd frequencies. The least square fits are excellent, but the sinusoidal nature of the
deviations due to incomplete orthogonality are seen in the estimates. Figure 7.12 shows the
multimodal attenuation curve for the ISC '98 site. The estimates for the two modes tend to
converge at high frequencies, which is expected due to decreasing wavelengths. Figure
7.13 shows attenuation versus wavel ength.

Surface waves with equal wavelengths may penetrate the soil to different depths,
e.g. due to waveguide effects, and therefore the same wavel ength surface wave may have
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Figure 7.11 Multiple Mode Attenuation Coefficient Estimate. The attenuation coefficient

is estimated for the wavenumber modes with the second greatest energy
content.

184



Advanced Sgnal Processing Methods Applied to Engineering Analysis of Seismic Surface Waves

0.08 T T T T
0.07} @&b%f
a|Q
*
0.06} o Il
— . 7
§ 0.057°¢ & o(i@@@? d
~ . B O * T
M +
S 0.04} g & e .
g &
O 0.03} .
5 wo &
g 0.02| i ¥ ]
g * o
< £
0.01+ % _*_-)lqzblﬁfﬂ* .
o
0 foed -
O
-0.01 ' ' ' '
20 30 40 50 60 70

Frequency (Hz)

Figure 7.12 Multiple Mode Attenuation Curves for ISC '98 Site: Attenuation Versus
Frequency. The dominant energy mode (asterisks) and the mode with the
second greatest energy content (circles) are shown.

different material attenuation coefficients. The amost flat curve estimated for the second
mode istenable if viewed in terms of waveguides. If the second mode is due to the
reflection of different frequency waves at the same interface or curved ray paths in gradually
varying media, and the waves propagate within the same layer or layers, the attenuation will
be approximately equal. Additionally, the wavelengths will vary due to the difference in the
phase of reflected energy at different wavelengths.

7.6.5 Stationary Noise Removal
Stationary noise power can be removed with two procedures. First, the minimum
power estimated from the power spectrum estimate, i.e. in aregion remote from a signal
peak, can be subtracted from the sub-array power estimates. Second, eigenanalysis
provides a more pleasing alternative, since the noise power in the exact spatiospectral
correlation matrix estimates equals the minimum eigenvalue (Johnson and Dudgeon, 1993).
This relationship stems directly from the eigenvalue extremal property of power spectrum
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estimation (Hayes, 1996). Noise removal affects the ISC ' 98 attenuation coefficient
estimates minimally, probably due to the large power output of the active source relative to
the ambient selsmic background.

7.7 Ear-Fidld, x'*° and Cylindrical Model Comparison

The far-field, v'x decay rate forces cylindrically spreading Rayleigh surface waves
to fit the incorrect physical model. The effects on the estimated Rayleigh wave amplitude
and materia attenuation are different, depending on the assumptions about the model
parameters. This section will discuss the effects of the model incompatibility on traditiona
attenuation estimates and compare the traditional estimates with the cylindrical model
estimates.

7.7.1 Far-Field Approximation when Signal Amplitude Unknown
If the regression procedure chooses the intercept, minimization of the squared error

between the +/x model and experimental measurements can focus on the points further
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Figure 7.13 Multiple Mode Attenuation Curves for ISC '98 Site: Attenuation Versus
Wavelength. The dominant energy mode (asterisks) and the mode with the
second greatest energy content (circles) are shown.
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Figure 7.14 Mode Incompatibility I: Free Intercept. The cylindrical Bessel function
solution (solid line) is shown for wavenumbers equal to 0.01 rad/m (left panel)
and 1 rad/m (right panel). The v/x model (dashed line) is shown with free
intercept to maximize model convergence to the cylindrical model in the far-
field. In both panels the intercept for the Bessel functions are 0, on a natural
logarithm scale, while the Jx mode intercepts are 2.56 (left panel) and 0.91
(right panel).

from the source. Figure 7.14 shows the difference between the correct cylindrical wavefield
model intercept and the VX model for two example wavenumbers. The VX model does

not yield the correct intercept in either case, but the VX model looks more applicable for
the larger wavenumber.

7.7.2 Far-Field Approximation when Signal Amplitude Assumed Known
If the wave amplitude is assumed known, the model incompatibility effects have a
different impact on the material attenuation estimate. Figure 7.15 shows two cylindrical

wavefields and the v/x model using the correct amplitude. The +/x modd fits neither
wavefield very well, and the misfit displays the difference in geometric spreading between

the cylindrical wave equation Bessel solutions and the VX model. Asan additional
comment, if the amplitude of the surface wave is fixed incorrectly, e.g. if the source
magnitude is used as the intercept even though only a portion of the energy contributes to
Rayleigh waves, then the error in the attenuation estimate will be larger and less
conservative.
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Figure 7.15 Modd Incompatibility I1: Known Intercept. The cylindrical Bessal function
solution (solid line) is shown for wavenumbers equal to 0.01 rad/m (left panel)
and 1 rad/m (right panel). The v/x model (dashed line) is shown with
intercept fixed to the correct cylindrical amplitude, whichis 0. Notice the

large deviation of the +/x from the cylindrical models.

7.7.3 Model Incompatibility Effects on Attenuation Estimates
The effects, when allowing the regression to choose the intercept, include the
following:
1.) The material attenuation estimates are biased, but asymptotically unbiased as
frequency increases,
2.) The material attenuation estimates are unconservative, since the material
attenuation must compensate for using too small a geometric spreading rate.

7.8 Discussion

Figure 7.16 compares the minimum wavenumber and dominant mode attenuation
coefficients. In aprofile with increasing damping with depth, the minimum wavenumber
attenuation estimate should be lower for al frequencies, but due to noise inclusion, the
samples are greater for some frequencies. At larger frequencies, and shorter wavelengths,
the minimum wavenumber material attenuation estimates do yield a lower attenuation
estimate because of alarger spatial distance relative to wavelength for the orthogonality
properties to develop. The general trends of the minimum wavenumber and dominant mode
attenuation estimates are the same, but the sub-array dominant mode estimator appears to
isolate an additional mode from about 45 to 55 Hz.
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Figure 7.16 Comparison of Minimum Wavenumber (squares) and Sub-Array Dominant
Mode (asterisks) Attenuation Estimates

As discussed in the previous section, the Jx modd would be expected to yield

unconservative attenuation estimates. The +/x model resembles the minimum wavenumber
attenuation estimate, since all the magnitude estimates are combined without attempting to
filter competing waves. Figure 7.17 compares the VX model attenuation estimates,
obtained by alowing the regression to determine the intercept, and the minimum

wavenumber attenuation estimate. The trends are almost identical, with the v/x model
estimates always plotting above the minimum wavenumber estimates. The convergence of
the two estimates as frequency increases supports the asymptotically unbiased nature of the

VX mode attenuation estimates.
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At lower frequencies, below about 20 Hz, the minimum wavenumber and sub-array
dominant mode estimators yield attenuation estimates that imply an increase in energy with
distance, i.e. attenuation estimates with the incorrect sign. The estimation of a physically
impossible quantity is explained by the resolution of the array. Figure 7.18 shows the
attenuation estimates for relatively low frequencies. The cutoff for the correct sign on the
attenuation estimates corresponds to the point at which single wavenumbers can be isolated,
i.e. the frequency-wavelength pair at which the array can resolve a single wavenumber. If
single wavenumbers cannot be isolated, an incorrect geometric spreading function is used to
normalize the wavefield. Asshown in Figure 7.17, the far-field VX attenuation estimates
never become negative. Although a more pleasing physical result, the nonnegative
estimates stem from a compensation for using a too low geometric spreading loss.
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Figure 7.17 Comparison of VX Modd (diamonds) and Minimum Wavenumber (squares)
Attenuation Estimates
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Figure 7.18 Limited Resolution Effects on Attenuation Estimation. The minimum
wavenumber (squares) and sub-array dominant mode (asterisks) attenuation
estimates are shown.

7.9 Summary and Conclusions

The v/x model represents only an approximation to the correct physics of
cylindrical spreading Rayleigh surface waves. The use of the Bessel function solution to the
cylindrical wave equation and optimum wavenumber estimates allows geometric spreading
to be removed. Different cylindrical wavenumbers decay at different rates, which explains
the previous observations of site-dependent geometric spreading functions (Lai, 1998). The
geometric spreading and cylindrical propagation model for Rayleigh surface waves was
discussed, and the correct model was used to obtain dominant and multimodal attenuation
coefficients.
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