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therefore, decreasing wavelength. The two dispersion relations differ considerably at large
wavelengths.

The fundamental, geometric definition of phase velocity is shown in Figure 6.31,
where the dispersion relation for the gradually increasing shear wave velocity profileis
shown. The phase velocity as afunction of frequency and wavenumber equals the slope
from the origin to the point on the dispersion relation corresponding to the particular
frequency-wavenumber pair. For additional reference, the group velocity, which equals the
instantaneous slope of the dispersion relation, is shown for reference. A profile with
gradually decreasing shear wave velocity would bend downward rather than upward as the
wavenumber decreased.
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Figure 6.30 Dispersion Relation for a Heterogeneous Half-Space with Gradually
Increasing Shear Wave Velocity Vs with Depth. The half-space has a
minimum Vg = 108.76 m/s at the surface, and the Vs gradually increasesto
infinity with increasing depth. The homogeneous half-space dispersion
relation (dashed line) is shown for reference.
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Figure 6.31 Group and Phase Velocity Definitions (After Johnson and Dudgeon, 1993)

6.10.3 Traditional Two-point SASW Dispersion Curve Estimators

The traditional dispersion curve estimates are obtained from averaging
measurements of phase change for various spatial lags over arange of frequencies. The
traditional two-point estimates for a homogeneous half-space with a Poisson’sration n =
0.25 and Vs = 108.7 m/s will be analyzed in detail to determine the consequences of the
modeling incompatibility on the phase velocity estimates.

Figure 6.32 shows the traditional two-point dispersion curve estimates for a
homogeneous half-space. The graph simply represents the estimates of phase velocity due
to modeling a cylindrically spreading wavefield with a plane wave model. The incorrect,
lower phase velocity estimates at lower frequencies have previously been attributed to
coupling of near-field surface and body waves (Sanchez-Salinero, 1987).
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The model incompatibility completely explains the lower surface wave phase
velocities at lower frequencies for a homogeneous half-space. Figure 6.33 shows the
unwrapped phase for plane wave and cylindrical wave propagation for a wavenumber =
0.62 rad/m, corresponding to a frequency = 10 Hz in Figure 6.32. Although wavenumber is
constant, the phase change versus distance is not linear for a cylindrical wave. Instead, the
phase change is greater near the source, as seen in the right panel of Figure 6.33. Figure
6.34 shows the effect of the model incompatibility on the traditional cross power and
transfer function two-point estimators. In the case of a homogeneous half-space, both
methods overestimate the wavenumber, and the transfer function method estimates a larger
wavenumber than the cross power spectrum method, as shown in the left panel of Figure
6.35. Asthe measurement distance from the source increases, both phase velocity
estimation methods tend asymptotically to the correct estimate, as shown in the right panel
of Figure 6.35.
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Figure 6.32 Traditional Transfer Function (dashed) and Cross Power (solid) Dispersion
Curve Estimates for a Homogeneous Half-Space with Vg = 100 m/s. The

receivers are placed at di = | (10 Hz = 10 m and dy = 20 m for the cross power
spectrum method, and the sensors for the transfer function method are placed
at the source location and a distance of 15 m.
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Figure 6.33 Unwrapped Phase for a Plane Wave (solid line) and Cylindrical Wave (dashed
line) at 10 Hz for a Homogeneous Half-Space. The right panel shows a close-
up of the left panel to emphasize the curved phase change for the cylindrical
model near the source.

In aplot of phase velocity versus frequency in the homogeneous case, the phase
velocity estimated from the transfer function method would always be lower than the cross
power spectrum traditional estimator. Figure 6.36 shows the percent error (in dB’s) of the
two estimators for a surface wave wavelength = 10 m. The common bounds on the near-
field recommendations in the geotechnical field are one-haf wavelength in normally
dispersive media and two wavelengths in inversely dispersive media. At one-half
wavelength from the source, the error for the cross power spectrum method in a
homogeneous half-space is about one percent (0 dB), while the transfer function method is
still about 10 percent (20 dB). At two wavelengths from the source (20 m), the cross
power method has less than 0.1 percent (-20 dB) error, but the transfer function method
still has about a four percent error (10 dB). Therefore, the error traditionally associated
with near-field and body wave interference effectsis primarily caused by the model
incompatibility of plane wave estimators in a cylindrical wavefield. Table 6.1 summarizes
the model incompatibility effects on the traditional two-point phase velocity estimators.
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Figure 6.34 Traditional Cross Power and Transfer Function Phase Change Estimates for
a Homogeneous Half-Space

Table 6.1 Mode Incompatibility Effects on Traditional Phase Velocity Estimators for a
Homogeneous, Elastic, |sotropic Half-Space

Traditional Estimator | %2 Wavelength from Source | 2 Wavelengths from Source
Cross Power 1% Lessthan 0.1 %
Transfer Function 10 % 4%

Figure 6.37 shows the dispersion relation for the traditional estimators compared to
the correct, homogenous, elastic, isotropic half-space case. The traditional estimators tend
to the correct estimate at large frequencies and wavenumbers, but the estimate errors are
considerably acute at lower frequencies and wavenumbers.
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Figure 6.35 Traditional Two-Point Method Wavenumber (left panel) and Phase Ve ocity
Estimates (right panel) as a Function of Measurement Distance from the
Source. The cross power (solid line), transfer function (dashed line), and
correct Vs = 100 m/s are shown for frequency = 10 HZ (I (10 Hz) = 10 m).
Notice as the distance from the source increases, the phase velocity estimates
asymptotically converge to the correct estimate. The transfer function method
suffers larger estimation errors from the model incompatibility effects.

6.10.4 Effects of Model Incompatibility

Although the effects may seem insignificant for engineering analysis, sincein ideal
conditions the error in estimated phase velocity is generally less than five percent, the
conseguences of the model incompatibility in geotechnical analysis of surface waves are far
moreinsidious. Not only has the model incompatibility led to inappropriate conclusions
regarding phase velocity estimation, but also regarding material attenuation. The present
section discusses the consequences pertaining to phase velocity estimation, while Chapter 7
treats the effects on material attenuation.

First, the results from traditional Rayleigh phase velocities, even in the most ideal
Situation, are biased. Second, the inapplicability of the far-field, plane wave assumption has
led to awhole field of conflicting and qualitative literature concerning the mitigation of
near-field effects due to body waves. Third, the abilities of active surface wave methods for
near surface geotechnical site investigation at lower frequencies have been unduly
constrained, minimizing the potential usefulness of the method. Fourth, the large scatter of
data and qualitative data inclusion decisions for phase velocity estimates due to the model
incompatibility have decreased the acceptability of the method with practicing engineers.
Each of the consequences mentioned will now be more fully discussed.
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6.10.4.1 Traditional Active Source Rayleigh Phase Velocity Estimators are Biased
Regardless of how far from the source measurements are made, the traditional two-

point phase velocity estimators for a single mode of surface wave propagation are biased.
As the far-field assumption becomes more acceptable with increasing distance from the
source, the traditional phase velocity estimators asymptotically approach the correct value.
Therefore, although the estimates are biased, they are asymptotically unbiased as distance
from the source tendsto infinity. In many engineering applications, biased, but
asymptotically unbiased, estimates are used successfully. In fact, even the advanced plane
wave power spectrum estimators discussed in Section 6.7 are biased for a cylindrically
spreading wavefield. For geotechnical surface wave analysis, implementing the appropriate
wavefield model leads to unbiased phase velocity estimates.
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Figure 6.36 Percent Error (dB) for Traditional Transfer Function (dashed line) and
Cross Power (solid line) Phase Velocity Estimators, for| =10 m, asa
Function of Measurement Distance from Source
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Figure 6.37 Dispersion Relation for the Traditiona Transfer Function (dashed line) and
Cross Power (light solid line) Estimators for a Homogeneous, Elastic,
Isotropic Half-Space. The correct dispersion relation is shown in the dark
solid line. Notice the much larger estimation error of the transfer function
method and the persistence of the estimator bias as frequency and
wavenumber increase.

The asymptotic property of the phase velocity estimators can easily be visualized,
and the geometric visualization will help to understand some previous results found from
numerical ssmulation of active source surface wave tests. Figure 6.38 shows a series of
dispersion curves for an ideal, uniform half-space. Using dimensionless units, the Vg of the
half-space equals 1.0, yielding a Rayleigh wave phase velocity of about 0.92. Phase
velocities are estimated at distances from the source equal to 0.75, 1.5, and 3.0 units.
Therefore, the sensor positions for the traditional cross power estimator are d; = 0.5, 1.0,
and 2.0, respectively, and d; = 2d;. In the case of the two-point transfer function method,
sensors are located at the source and at d; = 0.75, 1.5, and 3.0. Notice that as the distance
from the source becomes larger, both traditional estimation methods tend to the constant
phase velocity of the homogeneous half-space. Also notice, as expected, the traditional
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two-point cross power dispersion curve estimator converges much more rapidly than the
transfer function estimator and yields smaller bias.

6.10.4.2 Near-field Filtering Requirements are Qualitative and Conflicting
Table 6.2 reproduces a summary of the surface wave test near-field mitigation and
gpatid filtering criterion from Ganji, et a. (1998). Although referred to as “filtering”
criteriain the geotechnical literature, the recommendations really are not filtersin asigna
processing sense. The recommendations are smply qualitative observations stemming from
methods that appear to work well in experimental and numerical studies.
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Figure 6.38 Sequence of Dispersion Curve Estimates for Traditional Cross Power (left
panel) and Transfer Function (right panel) Method Estimatorsin a
Homogeneous Half-Space with Vg = 0.92 as Distance from Source Increases.
A dimensionless space has been used to emphasi ze comparisons with previous
geotechnical numerical studies, i.e. Sanchez-Salinero (1987), and the
wavelength at 0.92 Hz equals 1. The dispersion curves for a measurement
distance from the source equal to 0.75 (dashed-dot line), 1.5 (dashed line), and
3.0 (solid line) are shown. The correct Vi = 0.92 (dark solid line) is shown
for reference. Notice the larger bias and slower convergence of the traditional
two-point transfer function estimator.

139



Active Surface Wave Phase Vel ocity Estimation

Table 6.2 Traditional Near-Field Mitigation and Filtering Recommendations (Ganji et al.,

1998)

First Receiver Recelver Spacing
Lysmer 25 <d;
Heisey et al. d; =Dd 0.3331 <Dd<2l
Sanchez-Salinero et al. d;=Dd 2l <Dd
Roesset et al. 051 <Dd< 2l 0.5d; <Dd <d;
Gucunski and Woods 051 <Dd<4l
Tokimatsu et al. 0251 <dy+Dd/2 | 006251 <Dd<|

None of the criterion are the same, and based on the error found due to the
cylindrical wavefield, some of the methods will yield smaller phase velocity estimates in
normally dispersive media because they alow the first receiver position to be closer to the
source. The conflicting and arbitrary recommendations in Table 6.2 are due to the poor
estimation capabilities of the traditional two-point estimators and the model incompatibility.
The lower bound on the first receiver corresponds to the acceptable error from estimating a
plane wavenumber in acylindrical wavefield. In one recommendation, the lack of alower
bound indicates that the model incompatibility is not uniformly recognized in active seismic
surface wave testing. The upper bound on the second receiver stems from limited energy
availability from the source and spatial aliasing. Recall that spatial aliasing mitigation for
the traditional estimators relies on unwrapping the phase from a low frequency, so the
spacing of the sensors must be less than one-half the largest wavelength measured. The
lack of an upper bound on the second receiver spacing in one recommendation indicates
that aliasing criteriain spatial wavefields is not uniformly recognized in the geotechnical
engineering literature.

6.10.4.3 Constrained the Usefulness of Active Source Surface Wave Testing

The model incompatibility constrains the ability to estimate phase velocities at lower
frequencies and larger wavelengths. 1n single mode wavefields, the traditiona phase
velocity estimators always underestimate the phase velocity at lower frequencies, and the
transfer function method actually tends to a zero velocity as frequency tends to zero,
regardless of the profile or material velocity. The impact on ability to retrieve usable
experimental estimatesis significant. 1n cases where a single mode dominates, the phase
velocity can be estimated to much lower frequencies if the correct cylindrical physical model
and array processing are used.

6.10.4.4 Large Scatter of Traditional Estimators Decrease Test Acceptability
Possibly the most discouraging result of the model incompatibility is the loss of
persuasive power concerning practicing geotechnica engineers. The large scatter of two-
point phase velocity estimates used to determine an average, or apparent, dispersion curve
and the apparent ad hoc and qualitative nature of the filtering requirements, evidenced by
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the array of recommendations in Table 6.2, reduce the ability to attract practicing engineers
to implement the surface wave testsin practice. The advanced conventional and adaptive
array based methods, although conceptually more difficult, remove the qualitative nature of
seismic surface wave testing.

6.11 Cylindrical Wavefield Beamformers

An error in the traditional two-point phase velocity estimator, especially for low
frequencies, is introduced due to using the incorrect model for the wavefield. In addition,
due to the difference in phase change, the cylindrical wavefield has unequally spaced zeros
which follow a Bessal function solution. This section derives optimum cylindrica
beamforming methods, which use a different set of constraints and a different steering
vector. The following sections will show the following:

1.) The ability of array-based plane wave estimators to handle the model

1 0 T T T T T T

Frequency = 40.625 Hz

O

-10

_20_/\

-30 ¢

Normailzed Power (dB)

-40F

T
——

-50 F

-60

1.5 2
W avenumber kx (rad/m)

Figure 6.39 Power Spectrum Estimate for FDBF (dashed line) and Cylindrical HFDBF
(heavy solid line) Methods Utilizing All 15 Sensors. Traditional estimators
are shown with the asterisk and circle.
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Figure 6.40 Cylindrical HFDBF (solid line) and FDBF (dashed line) Power Spectrum
Estimates Using All 15 Sensors

incompatibility if the array length islong enough,
2.) The ability of the cylindrical beamformers to estimate phase velocities for
relatively long wavelengths compared to the array length.

6.11.1 Cylindrical Frequency Domain Beamformer
The FDBF essentially takes the spatial Fourier transform of the spatiospectral
correlation matrix along the columns and then along the rows to estimate the frequency-
wavenumber power spectrum. The Fourier transform uses plane wave, complex
exponentials to line up the energy propagating past the array of sensors. The derivation of a
cylindrical beamformer ssimply uses the Hankel transform rather than the Fourier transform.
Define the cylindrical steering vector as

hk) =expl- j[f (Hol ) T(Holkxz)) - f(Holoxs)} — (6.12)

wheref denotes taking the phase angle of the argument in parentheses. Equation 6.12
shows the unity magnitude of the cylindrical steering vector, and the Hankel function Hg
allows the sensors to be aligned with the Bessel function phase rather than the equally
spaced complex exponentia phase, asin the FDBF. Since the phase of the Hankel function
is used, the cylindrical beamformer will also be called the Hankel Frequency Domain
Beamformer (HFDBF) to avoid any confusion with the conventional FDBF. The cylindrica
HFDBF power spectrum estimate equals

Pueper(k.w) =hM (RWN(K) (6.13)
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The FDBF and HFDBF wavenumber power spectrum estimates at frequency =
40.625 Hz are shown in Figure 6.39. Two additional power spectrums are shown in Figure
6.40, and the peaks are very similar. The array smoothing function differs between the
FDBF and HFDBF, due to a difference in the orthogonality properties of the transform
kernels, i.e. the orthogonality of complex exponentials and Hankel functions are different.
Figure 6.41 shows the array smoothing function for the 1SC ‘98 synthetic linear array for
the FDBF and HFDBF. The HFDBF has a narrower mainlobe width and larger sidelobes
than the FDBF.
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Figure 6.41 Array Smoothing Functions for the Cylindrical HFDBF (solid line) and FDBF
(dashed line) for the ISC ‘98 Synthetic Linear Array. The Cylindrica
HFDBF shows increased resolution and larger sidel obes than the FDBF.
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Figure 6.42 Cylindrical HFDBF Dispersion Curve Estimate. The cylindrical HFDBF
estimate using al 15 sensorsin the ISC ‘98 synthetic linear array is shown

with stars, and the FDBF (circles) and traditional estimates (solid and dashed
line) are shown for reference.
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Figure 6.42 shows the HFDBF dispersion curve estimate for the ISC ‘98 site using
al 15 sensor lags. The HFDBF and FDBF estimates appear to be ailmost identical,
displaying the increased abilities of the advanced plane wave spectrum estimators to handle
the near-field model incompatibility. Figure 6.43 shows a plan view of the HFDBF
frequency-wavenumber power spectrum estimate. Figure 6.44 shows the percent difference
between the FDBF and HFDBF phase velocity estimates shown in Figure 6.42. The percent
difference equals zero for most frequencies, and is less than 10 percent in most cases.

To emphasize the impact of the cylindrical wavefield closer to the source, Figure
6.45 shows the HFDBF and FDBF power spectrum estimates using only sensors 1 to 8,
corresponding to a maximum lag of 10 m. The HFDBF estimates a larger velocity,
especially at lower frequencies, and the two methods tend to converge to the same estimate
at larger frequencies. At lower frequencies, the reduced estimate of the phase velocities
compared with Figure 6.42 is due to a decrease in resolution when using an array length of
10 m. Also, the phase velocity estimates at |lower frequenciesin Figure 6.45 probably
represent amix of several modes due to the reduced resolution.
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Figure 6.43 Cylindrical HFDBF Frequency-Wavenumber Power Spectrum Estimate
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Figure 6.44 Percent Difference Between the Cylindrical HFDBF and FDBF Phase
Velocity Estimates Using All 15 Sensors

Figure 6.46 (left panel) emphasizes the change in the peak location between the
FDBF and HFDBF estimators at a frequency = 10.93 Hz. The peak wavenumber location
of the HFDBF is dlightly to the left of the FDBF peak, and therefore, the HFDBF estimates
alarger phase velocity. The right panel of Figure 6.46 shows the percent difference
between the FDBF and HFDBF phase velocity estimates using only the first eight sensors.
The percent difference is amost a monotonically decreasing function of frequency. The 10
percent difference occurs at afrequency of about 6 Hz, corresponding to a wavelength of
about 26 m. The one percent difference point occurs at about 20 Hz, corresponding to a
wavelength of about 8 m. The difference converges to zero as frequency increases,
showing the experimental estimates support the asymptotically unbiased nature of the plane
wave estimators.

6.11.2 Cylindrical Minimum Variance Distortionless L ook
The MVDL isthe solution to an explicit optimization problem, and therefore,
derivation is more detailed than the FDBF estimator. The derivation of a cylindrical MVDL
method, which will also be called the Hankel MV DL method (HMVDL), follows the same
formulation as the MV DL derivation in Chapter 4. The constraints now become Hankel

146



Advanced Sgnal Processing Methods Applied to Engineering Analysis of Seismic Surface Waves

function phase constraints, rather than complex exponential constraints, and the power
estimateis
1

6.14
hH K)RW) th(k) (649

PamvoL (K,w) =

where h(K) is defined in Equation 6.12. The HMVDL attempts to pass with unity gain a
cylindrical wave propagating with a given wavenumber, while optimally suppressing
competing cylindrical waves and noise.

Figure 6.47 shows the 15 sensor synthetic linear array HMVDL and MVDL power
spectrum estimates for two frequencies. Figure 6.48 shows the difference in the optimal
weights calculated for the HMVDL and MV DL methods, and although the weights differ
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Figure 6.45 Dispersion Curve Estimate for the Cylindrical HFDBF (stars) and FDBF
(circles) Methods Using Only Sensors 1 to 8. Thetota array length for
sensors 1 to 8is 10 m. The cylindrical HFDBF estimates larger phase
velocities at al frequencies due to mitigating near-field model incompatibility
effects.
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considerably, the spectrum estimates are very similar. The HMVDL and MVDL dispersion
curves using all 15 sensorsin the ISC ‘98 synthetic linear array are shown in Figure 6.49.
The phase velocity estimates are very similar, and Figure 6.50 shows that the percent
difference between the HMVDL and MV DL phase velocity estimatesis zero for amost al
frequencies. Figure 6.51 shows a plan view of the HMVDL frequency-wavenumber

spectrum.
Figures 6.52 and 6.53 analyze the difference in MVDL and HMVDL phase velocity

estimates for sensors 1to 8. Similar to the FDBF analysis, the HMVDL estimates higher
velocities at lower frequencies, and the two methods converge as frequency increases.
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Figure 6.46 Cylindrical HFDBF Versus FDBF Estimates Using Only Sensors 1 to 8. Close
up of peak location of Cylindrical HFDBF (solid line) and FDBF (dashed line)
power spectrum estimates at a frequency = 10.93 Hz are shown in the |eft
panel, and the percent difference between the Cylindrical HFDBF and FDBF
phase velocity estimates when using only sensors 1 to 8 are shown in the right
panel. Notice the monotonically decreasing estimation difference as frequency

increases.
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Figure 6.47 Cylindrical HMVDL and MVDL Power Spectrum Estimates for 15 Sensor
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Figure 6.48 Magnitude and Complex-Vaued Weights for the Cylindrical HMVDL and
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Figure 6.49 Dispersion Curve Estimates for Cylindrical HMVDL (triangles) and MVDL
(squares) Methods Utilizing All 15 Sensorsin ISC ‘98 Linear Array
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Figure 6.50 Percent Difference Between Cylindrical HMVDL and MVDL Phase Velocity
Estimates Using All 15 Sensors. Compared to the FDBF (see Figure 6.44),
the MV DL yields a significantly smaller error due to the near-field modeling
incompatibility.
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Figure 6.51 Cylindrical HMVDL Frequency-Wavenumber Power Spectrum Estimate
Utilizing All 15 Sensorsin the ISC 98 Synthetic Linear Array
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Figure 6.52 Dispersion Curve Estimate for the Cylindrical HMVDL (triangles) and
MVDL (sguares) Methods Using Only Sensors 1 to 8. Thetotal array length
for sensors 1to 8is10 m. The cylindrical HMVDL estimates larger phase
velocities at al frequencies due to the mitigation of near-field model
incompatibility effects.
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Figure 6.53 Percent Difference Between Cylindrical HMVDL and MVDL Phase Velocity
Estimates Using Only Sensors 1 to 8. Zero dB corresponds to a 1 percent
difference in the estimates.

6.12 Plane Wave Versus Cylindrical Wave Beamformers

Using the correct physical model offers better phase velocity estimates but requires
greater numerical calculation. The plane wave estimators allow efficient use of the FFT, as
discussed in Appendix A; on the other hand, cylindrical beamformer steering vectors must
be calculated numerically for each possible wavenumber. Compared to the traditional two-
point phase velocity estimators, the conventional and adaptive plane wave estimation
methods control the near-field error to a great extent, due to the integration of information
over alarger spatial range. Considering the percent difference of the results between the
cylindrical and plane wave array-based estimation methods presented in this section, the
plane wave array estimators yield excellent estimates except at low frequencies or for short
array lengths. Due to the increased calculating speed and ease of interpretation, the plane
wave estimators will be used for the remainder of this chapter, unless otherwise noted.

6.13 Multiple Mode Estimation

Extraction of multiple modes offers significant gains in information and the ability to
determine a more unique inverted soil profile. Although peak picking in the wavenumber
spectrum offers the simplest method to retrieve multiple modes, severa disadvantages,
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especialy when using only 15 sensors lags, exist in the smple peak picking method. First,
the presence of multiple propagating signals result in biased peak estimates, typically with
the bias increasing as the signals become closer together. Second, the possibility of
misclassification of a sidelobe as asigna exists when dealing with imperfect spectra
smoothing kernels. Third, sidelobes due to large amplitude signals can mask the
identification of smaller amplitude signals. Fourth, the superposition of several signals
resultsin sidelobes of each signal contributing to more remote portions of the spectrum.
Depending on the location of sidelobes and signals, the ordering of the modes with respect
to energy content may be improperly determined if the engineer solely relies on peak
picking methods. Although the adaptive methods reduce the magnitude of the previoudly
mentioned problems, as long as a limited number of sensors are deployed, the problems will
be manifested in peak picking methods.

Since the ISC ‘98 synthetic linear array includes only 15 sensors, and in many cases,
practicing engineers will deal with limited experimental measurements, a more robust
method of determining multiple mode wavenumbers and modal power ratiosis necessary.
Assuming the largest peak in the power spectrum estimate is due to a propagating signal,
the smoothing kernel associated with that signal is removed and the next highest peak is
chosen as the second mode of propagation (Nolet, 1976; Aki and Richards, 1980). Nolet
(1976) subtracted the MV DL smoothing kernel, which depends on both the frequency and
wavenumber, and therefore, changes form for each frequency and mode being estimated.
Although the method can be used with any spectrum estimator in which an array smoothing
function has meaning, a method using only the FDBF method is presented. The FDBF is
used for the following reasons:

1.) The FDBF offers the most efficient implementation, if concern over speed of
calculation is an issue, because of the ease of utilizing the FFT with linear arrays,
and non-necessity of calculating matrix inverses,

2.) The FDBF method is easiest to understand and implement because the array
smoothing function exhibits a constant structure. The FDBF is alinear method,
in the terminology encountered in advanced signal processing, because the filter
structure is identical regardless of which spectral component is being estimated.
In comparison, the MV DL is considered a non-linear method because the scaling
of asingle spectra component estimate depends on the mainlobe width and
sidelobe structure of the filter (Haykin, 1979).

In the desire to motivate the use of multiple mode extraction, the FDBF offers the most
tractable implementation method, allows an easy progression to the use of more advanced
multiple mode extraction methods, and, as seen in the following sections, will offer excellent
results in many cases.
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Figure 6.54 shows the power spectrum estimate after removing the dominant mode
for afrequency = 28.75 Hz. Removal of the dominant mode smoothing function allows the
second mode to be seen more clearly. Since the dominant mode normalized power is
considered equal to one, and the actual amplitude estimate is due to the dominant signal
plus sidel obes of other signals and noise, the power estimate after removing the dominant
mode may be less than zero at some frequencies. More advanced and iterative methods
could be used to minimize the effects of misestimating the dominant signal amplitude. To
help ensure a second mode is being estimated, only power ratios, relative to the first mode,
greater than 0.4 were used. The cutoff is rather arbitrary, but the extraction of multiple
modes from only 15 sensors should not be used without restraint.
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Figure 6.54 Extraction of Mode with Second Highest Energy Content
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Figure 6.55 Multiple Mode Dispersion Curve. Multiple mode dispersion curve displaying
the phase velocity estimates from the wavenumbers with the two greatest
energy contents at each frequency. The circles contain greater energy than
the asterisks.
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Figure 6.56 Power Ratios of Multiple Modes. The power ratios of the two modes shown
in Figure 6.55, expressed as the second highest energy mode divided by the
dominant energy mode.
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Figure 6.57 Estimation of Wavenumber with Third Greatest Energy Content. Power
spectrum estimate (dark solid line) at a frequency = 64.375 Hz after the
removal of the two highest energy modes. The original power spectrum
(dash-dot line) and the power spectrum after removing the dominant mode
(dashed line) are shown for reference.
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Figure 6.58 Dispersion Curve Estimate Including the Mode with the Third Greatest
Energy Content. The modes containing the third greatest energy (squares),
the second greatest energy (asterisks), and the greatest energy (circles) are
shown.
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Figure 6.59 Multiple Mode Power Ratios. The power ratio of second (asterisks) and
third (squares) highest energy modes relative to the dominant energy mode
are shown. Notice the apparent resonance near 40, 55 and 70 Hz.
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Figure 6.60 Phase Versus Lag Distance for the ISC ‘98 Site at a Frequency = 28.75 Hz.
Experimental measurements (circles), dominant mode FDBF estimate (dashed
line), and dominant mode Cylindrica HFDBF estimate (solid line) are shown.

Figure 6.55 shows the dispersion curve estimate including the two modes with the
greatest energy content. The second mode appearsto fill in the gaps of the dominant mode.
Figure 6.56 shows the power ratio of the mode with the second greatest energy content
relative to the dominant mode. A resonance effect appears to occur near 40 and 55 Hz.

Figure 6.57 shows an example of the isolation of athird mode of propagation, and
Figure 6.58 shows the dispersion curve estimated from the three modes with the greatest
energy content. The third mode appears to continue the trends of the previous modes.
Figure 6.59 shows the power ratio of the mode with the third greatest energy content.

Two features of the multiple mode power ratio graphs should be emphasized. First,
the power ratios of the second and third greatest energy content modes show a resonance
phenomenon at about 40, 55, and 70 Hz. The resonance phenomenon is not unexpected,
since the multiple modes are due to reflections at material boundaries and the amount of
energy reflected depends on the layering characteristics, angle of incidence, and materia
properties. Second, the fundamental mode does not dominant.
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6.14 Signal Moddling

A detailed analysis of phase versus spatial lag will clarify several of the important
concepts relating to seismic surface wave modal superposition and phase vel ocity
estimation, including the reasons underlying the relative positions of the traditional phase
velocity estimators. Figures 6.60 and 6.61 show the experimental phase measurements and
the fit of the dominant energy mode for afrequency = 28.75 Hz. The oscillatory character
of the experimental measurements, due to the superposition of several modes, around the
dominant mode is evident. The HFDBF estimate tends to fit the data better due to the
ability to model the curved phase change near the source.

Figure 6.62 displays the physical reason the traditional two-point cross power
spectrum method yields too low a wavenumber estimate, and therefore, too high a phase
velocity estimate. Figure 6.63 shows asimilar plot for the traditional transfer function
method, which yields too high a wavenumber estimate and too low a phase velocity
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Figure 6.61 Close Up of Figure 6.60. The close-up emphasizes the apparent oscillation of
the ISC * 98 experimental phase measurements (circles) around the
fundamental Cylindrical HFDBF (solid line) and FDBF (dashed line)
estimates for a frequency = 28.75. The dominant energy mode wavenumber
estimate for both the FDBF and the Cylindrical HFDBF equals 0.9695 rad/m.
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Figure 6.62 Traditiona Two-Point Cross Power Estimate Model. The traditional two-
point cross power spectrum estimation method (shown in asterisks and heavy
line) yields too low a wavenumber estimate compared to the advanced
estimator (shown in dashed ling). The experimental measurements are shown
for reference (solid line).

estimate for frequency = 28.75 Hz. Due to the superposition of several modes, the two-
point method will estimate alternatively high and low phase velocity estimates depending on
the choice of sensor locations, and example sensor locations are easily identifiable where the
cross power spectrum will yield alower phase velocity than the transfer function estimate.

Figures 6.62 and 6.63 are useful to discuss some of the common conclusions and
recommendations relating to the traditional seismic surface wave estimators. First, the
transfer function method has been noted to yield better estimates in experimental dispersion
curves exhibiting resonance effects, since the transfer function method tends to smooth out
some of the cross power method dispersion curve oscillations (Sanchez-Salinero, 1987).
The transfer function method yields smoother results due to averaging over larger spatial
lags.

Second, the recommendation of using areceiver 1 to receiver 2 distance equal to at
least 2 times the source to receiver 1 spacing redlly is stating that to estimate the phase
velocity in amultimodal wavefield with traditional estimators, a minimum amount of
averaging of spatial distance is required before an apparent mode manifestsitself. The
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recommendation of as large aratio of spacings as possible is also stating that as large an
averaging as possible is recommend due to the poor estimator properties of the traditional
methods. Third, even in the far-field, multiple mode wavefields can produce negative phase
velocity estimates for close receiver spacings when using the cross power method.

Figure 6.64 shows the fit of the three greatest energy modes, weighted by their
respective estimated amplitude ratio, with the experimental phase measurements for
frequency = 28.75 Hz. Thefit isexcellent. Chapter 7 will introduce attenuation and the fit
of experimental magnitude measurements.

6.15 Alternative Phase Velocity Estimation Method

The origina derivation of the MV DL method used the noise covariance matrix
(Capon, 1969), which includes only noise, rather than the spatiospectral correlation matrix,
which includes signal plus noise. When the noise background field can be measured prior to
introducing the signal, such as prior to the arrival of an earthquake event, the optimum
sensor weights can be determined from the noise field. The underlying motivation for this
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Figure 6.63 Traditional Two-Point Transfer Function Estimate Model. The traditional
two-point transfer function method (shown in triangles and heavy line) yields
too high awavenumber estimate compared to the advanced estimator (shown
in dashed line). The experimental 1SC ' 98 measurements are shown for
reference (solid line).
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Figure 6.64 Multiple Mode Phase Change Model. The experimental 1SC ' 98 phase
measurements (shown with circles) and the fit of the three modes containing
the greatest energy obtained with advanced power spectrum estimators (shown
with solid line) for wrapped (left panel) and unwrapped (right panel) phase
plots.

stems directly from the eigenanalysis concepts described in Chapter 4. The signal and noise
are orthogonal components in the wavefield, and the optimum filter is designed ssimply by
looking for components orthogonal to the noise. Since the active surface wave tests allow
measurement of the ambient background wavefield before the introduction of the signal, the
use of the noise covariance matrix is asimple extension. Note that problems such as
stationarity of the background noise field remain very important.

6.16 Summary and Conclusions
Spatial array processing alows considerable gainsin information to be obtained
from the traditional surface wave setup. Along with afew assumptions about the
background noise wavefield, synthetic linear arrays can be derived. The advanced spectrum
estimation techniques solve the common problems associated with traditional analysis of
seismic surface waves. The three major problems identified in traditional seismic surface
wave analysis are the following:
1.) The model incompatibility effect, which is due to using a plane wave estimator in
cylindrical wavefields,
2.) Near-field body wave interference, due to reflecting body wave energy that does
not contribute to additional Rayleigh surface wave modes,
3.) Far-field body wave interference, which is due to the inability of traditiona
estimators to account for multiple surface wave modes of propagation.
The conventiona and adaptive plane wave synthetic array estimators yield
considerable decreases in the effects due to the model incompatibility, and the introduction
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of the correct Hankel function solution for cylindrical wavefields alows the development of
optimum cylindrical beamformers. The Bessal function follows similar orthogonality
properties as the complex exponential, and the smoothing function of the Hankel transform
issimilar to the complex exponential smoothing function encountered in Fourier analysis.
The resolution characteristics and effects of different normalization techniques were

discussed. Although normalizing by the +/x decay rate yields excellent results, the best
normalization, as shown in Chapter 7, would use the correct wavenumber geometric
attenuation rates. The model incompatibility effects were discussed in detail, due to their
large impact on traditional geotechnical phase velocity estimators and recommendations.
The common recommendations for near-field mitigation were shown to be dominated by the
acceptable errors due to the model incompatibility. The advanced spectrum estimators have
much better spatial filtering characteristics, and therefore, multiple modes and their power
ratios can be extracted.
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