4  Spatial Array Processing

The neglected borderland between two branches of knowledge is often that
which best repays cultivation, or, to use a metaphor of Maxwell’s, the
greatest benefits may be derived from a cross fertilisation of the sciences.

Lord Rayleigh, John William Strutt, Presidential
Address to the British Association’s Montreal
Meeting of 1884

4.1 Introduction

The primary goal of spatia array processing is signal enhancement and detection. In
traditional SASW tests, the two-sensor data is not efficiently combined to yield maximum
engineering information, as discussed in Chapter 6. The multidimensional signal processing
and spectrum estimation problems generalize the one-dimensional procedures in many ways,
but several important extensions and limitations must be addressed. This chapter will
introduce the general multidimensiona problem, and follow a path parale to the one-
dimensional problem. Since the data collection and analysis will now be dealing with three
dimensions, i.e. time and two-dimensional space, most of the formulas and analysis will be
framed in vector notation. The compact vector notation offers agreat deal of flexibility and
insight into the relationship between different multidimensional power spectrum estimators.

The chapter begins with an introduction of the primary spatial parameters through
an ideal wavefield model. Spectral operators and power spectrum estimators will then be
introduced and analyzed to discover how spatial array geometry, sensor characteristics, and
sensor weighting functions combine to determine the final spectral output. Comparisons of
afew possible array geometries are presented in Chapter 5.

4.2 |deal Wavefield Model and Parameters

An additional parameter must be introduced to describe the spatial variation of a
wavefield. The new parameter is avector spatia frequency called wavenumber, K.
Temporal frequency, wave propagation phase velocity, and wavenumber completely
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describe the dispersion relation and the physics of seismic surface wave propagation. Just
as the natural frequency of single degree-of-freedom systems describes the natural temporal
tendency of a system, wavenumber yields insight into the natural spatia tendency of the
system.

Wavenumber components enter into the wave equation as complex exponential
arguments and affect wave propagation in ways similar to temporal frequency. The
fundamental similarity between the tempora and spatial frequency is orthogonality of
monochromatic components. In fact, the orthogonality of different frequencies and
wavenumbers alows the division of atemporaly and spatialy wideband wavefield into
spectral components, including extraction and disentanglement of different seismic wave
modes. The ability to determine the natural frequencies and wavenumbers yields the desired
engineering parameters. The goal of all seismic surface wave experimental measurementsis
the determination of the natural wavenumbers of alayered system as a function of
frequency. The dominant wavenumbers directly yield phase velocity estimates and are
necessary to obtain attenuation coefficient estimates.

4.2.1 |ded Wavefied
If an ideal monochromatic, unit amplitude plane wave, characterized by asingle
frequency wp (rad/sec), single wavenumber ko (rad/m), and, therefore, constant phase
velocity, propagates past an array of sensors from a given direction g, as shown in Figure
4.1, the wave field is given by

z(x, 1) = exp[j(wot - kg )] (4.1)

where z(x,t) = the wave field measured at time t and vector position x, andj = +/- 1.
Planes of constant phase propagate past different positions with atime delay due to the
changein spatial location. Time delays between sensors in the temporal domain give linear
phase shiftsin the frequency domain, yielding information about the wavenumber k

k=2P;-D; (4.2)

where| =wavelength, Df = change in phase over the distance Dd, and Z isaunit vector in

the direction of propagation.

Loosaly, wavenumber is a spatia frequency, indicating the number of cycles per unit
length that a monochromatic wave exhibits in the direction of propagation. Since the
seismic surface wavefields considered in this dissertation have two spatial dimensions, the
gpatial frequency content of waves must be represented as a two-dimensional vector
(Johnson and Dudgeon, 1993). The wavenumber easily extends to three dimensions for
non-planar wavefields.

If unlimited temporal and spatia data could be collected, the wavefield in the f-k
domain would be given by
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Figure4.1 Ided, Single Signal Wavefield. The wavenumber kg describes the wavelength
| o, velocity of propagation vo, and direction of propagation q.
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i.e. athree dimensional impulse function in frequency-wavenumber space, where
ko =kox % +Koy 4, and i and j areunit vectors. Figure 4.2 shows an example line

spectrum in wavenumber space.

Wavenumber is a vector quantity, exhibiting both a magnitude and a direction, and
the magnitude of k at a given frequency directly yields the phase velocity. Different
directions and phase velocities must be scanned to determine the k, of the propagating
signals, yielding the phase velocity as

VR(Wo,ko) = (44)

where Vr(Wo,Ko) = Rayleigh surface wave phase velocity at wy and Ko.

4.2.2 Unambiguous Wavenumber Determination
Unambiguous determination of wavenumber with only two sensors requires
knowledge of either phase velocity or direction of propagation. The traditional active
SASW tests determine two-point wavenumber estimates through a priori knowledge of
propagation direction. Passive measurements offer a much more difficult challenge due to a
lack of knowledge regarding source location or direction of wave propagation, thus
requiring atwo-dimensiona array.
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Figure 4.2 Wavenumber Line Spectrum. A spatial wave with wavelength equal to 31.4
m, extending from the infinite past to infinite future, is shown in the left pane,
and the corresponding wavenumber line spectrum, with a single impulse at
wavenumber = 0.2 rad/m, is shown in the right panel.

4.3 Spatia Domain

A spatial array of sensors produces a discrete aperture through which to observe the
ambient wavefiedld. When signa analysisis extended to the spatial domain, the available
data suffers much greater constraints due to alimited number of sensors. Fortunately,
extending the signal processing concepts to the three-dimensiona f-k domain still relies on
the same basic concepts as one-dimensional parameter estimation. The spatial lag domain
and cross correlation between sensors are the fundamental entities being measured. The
cross power spectrum between sensors yields phase change information directly used in
wavenumber estimation. Engineers primarily exert control over the estimation process
through a sensor weight vector and selection of array geometry (as shown in Figure 1.5),
and the underlying random process must meet afew constraints. Fortunately, the wave
equation and the dispersion relation limit the viable physical combinations of frequency and
wavenumber.

4.3.1 Spatial Stacking: Increasing Signal-To-Noise Ratio
Spatia arrays offer significant signal enhancement capabilities over a single sensor in
many cases, analogous to the ability to enhance tempora signals through stacking. The
enhancement capabilities can be seen through a smple example. Assume awaveform
measured at S sensors consists of an identical signal s(t) plus random, statistically
independent noise from sensor to sensor. The measured signal at each sensor may be
written

Y (t) =s(t) + npy (1) m=12,....S (4.5)
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where y(t) = the signal measured at the m" sensor, (t) = the signal component identical in
all sensor measurements, and ny,(t) = the random noise measured at the m™ sensor. The
degradation due to the noise can be reduced by averaging the signals received at al the
sensors after implementing appropriate time delays, yielding

5! 1§
a Ym(t)=s(t) tsa Nm (1) (4.6)

m=0 m=0

z(t) =

w0k

The common signals in each sensor measurement tend to reinforce each other, while the
uncorrelated noise tends to cancel itself out during the averaging process. In this smplified
case, the noise has been reduced by afactor of S, while the common signal has reinforced
itself over al sensors, yielding an increase in signal-to-noise ratio of S.

4.3.2 Spatial Lag Domain (The Coarray)
For spatial arrays, the lag domain is summarized by the coarray, which presents all
the spatial lags contained in the array. The coarray is given by
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Figure 4.3 Five Sensor Circular Array Geometry
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Figure 4.4 Five Sensor Circular Array Coarray. Larger circlesindicate the amount of

redundancy at a particular lag. For example, the large circle in the center of
the coarray, at vector lag (0,0), indicates a redundancy of 5 at zero lag.
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g &
Clc)=a a dXm- Xn) (4.7)

m=1 n=1

where x; = vector location of thei™ sensor, ¢ = vector lag distance between sensors m and
n, and S = total number of sensorsin the array. The array geometry and coarray for afive
sensor circular array are shown in Figures 4.3 and 4.4. Redundant lags (i.e., lags occurring
more than once) are shown with larger circles.

4.3.3 Energy Content Limitations

If energy could exist anywhere in f-k space, the problem of determining where the
energy actually existed with adiscrete array of alimited number of sensors would present
extreme difficulties. For example, consider trying to determine the pixel values of an entire
photograph of 1 million pixels with only 16 or 32 samples. Fortunately, the physics of wave
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propagation and the dispersion relation limit and yield tremendous insight into the possible
locations of propagating seismic energy, restricting the f-k plane wave pairs that may exist
in agiven situation (Johnson and Dudgeon, 1993). Energy content in images does not have
to satisfy the wave equation, alowing energy to theoretically exist across all spectral space.
The constraints on the possible locations of spectral energy alow important subsets of
frequency-wavenumber space to be identified.

4.3.4 Spatial Aliasing and Resolution

A gpatia anti-aliasing filter is not implemented, as in the temporal case; therefore,
the wavenumber domain must be explicitly analyzed to determine if alarge k has diased
into alower k estimate. The array dimensions appear different to plane waves impinging
from different directions, and the minimum spatial lag in a particular direction determines
the aliasing characteristics for that direction. Therefore, the aliasing properties of an array
are typically direction dependent, which must be accounted for during direction of arrival
estimation. To avoid spatial aiasing in a particular vector direction, the minimum spatial
separation contained in the coarray must be

drpin(X) £ % (4.83)

which means the maximum wavenumber that may be contained in the wavefield without
dliasng is

ZPA __ b A
I 'min(X)  dpin (X)

K max (X) = (4.80)

where dyin(X ) = the minimum spatial lag in the coarray in the direction X , | min(X) = the
minimum wavel ength contained in the wavefield in the direction x , and ~ indicates unit
length. Intemporal domain signal processing, a constant sampling rate is typically used,
yielding easily identifiable aliasing criteria. In the spatial domain, unequal sampling rates
yield the possibility that no true aliasing or “grating” lobes will be present in the array
smoothing function. In cases where true aliasing lobes do not exist for an array geometry,
large sidelobes demarcate aliasing criteria and should be avoided.

Total aperture length, i.e. the longest spatial lag, in a particular direction controls
resolution. The Rayleigh criterion previously discussed in Chapter 3 isatypical resolution
criterion. Resolution in the wavenumber domain becomes very important for passive
measurements in soil media, due to the possible presence and close spacing of multiple
modes or multiple plane wave sources. If resolution is poor, the wavenumber may be
incorrectly estimated as a combination of the multiple waves present.

4.3.5 Weighting Function
The relative importance of spatia positionsin the array is controlled through a
sensor weight, or shading, vector. Similar to windows in the temporal domain, the sensor
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weightsw;, fori =1to S, allow some control over the relative importance of different
gpatial lags and control the spectral filter characteristics, trading off between wavenumber
resolution and energy leakage. Although equal weighting (i.e. two-dimensional rectangular
weighting) or symmetric weighting, Ssmilar to Hanning or Bartlett windows, may be used,
the optimum weight vector usually is not symmetric and may be complex-vaued. Section
4.5 derives and discusses the various optimum solutions available for the weight vector.

The main multidimensional problem, asin the one-dimensional problem, is the determination
of the optimal weight vector for a given problem.

4.3.6 Spatiospectral Correlation Matrix
In multidimensional power spectrum estimation problems, the spatiospectral
correlation matrix is the primary experimental function of interest. Each sensor’s data
vector s(n) of length N is blocked into B blocks of length L = N/B. The periodogram of
each block is calculated, and the cross power spectrum for each block is calculated and
averaged, using Bartlett's method, for all sensor spatial lags as

B
Rij(0) = & S0 (WS} (W) 4.9)
n=1

where R; ;(w) = the cross power spectrum between the i and j*" sensors, S (w) = the

Fourier spectra of the i sensor's datain the n™ block, and * indicates complex conjugation.
Equation 4.9 defines the spatiospectral matrix yielding for each frequency w

R1IW) Ryp) - Rys)i
u

R(W)=gR2'.1(W) Ra2l)  RasWy (4.10)
e : " :u
SRsaW) RgoW) -~ RgsWg

The matrix is Hermitian symmetric, and the main diagonal is smply the Bartlett autopower
spectral density estimate for individual sensors. The off-diagonal entries are the cross
power spectrum estimates between different sensors, and contain the phase change between
sensors. Although it is a function of frequency, the matrix contains information about the
gpatia properties of the wavefield.

If asignal is present, the spatiospectral correlation matrix may be broken into the
following

R(W) =Rg(W) + Ry (W) (4.11)

where Rs(w) = the correlation matrix corresponding to the common signal in each sensor
and Ry(w) = the noise spatiospectral correlation matrix. The signal spatiospectral
correlation matrix represents the true process the engineer desires to measure, but, in some
cases, optimum solutions emanate from considering only the noise characteristics of the
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wavefield. The division of the matrix into the noise and signal components will become
more useful in Section 4.5, when signal-noise subspace models are considered.

4.4 Multidimensional Spectral Domain

The principle goals of multidimensional spectrum estimation are exactly the same as
in the one-dimensiona case - design af-k spectra filter that approaches (in the limit) the
ideal three dimensional impulse function, and use weighting functions in the spatial domain
to minimize deterioration of filter performance due to sidelobes. The one-dimensional
solution actually controls frequency resolution in the multidimensional case.

4.4.1 Array Smoothing Function
The idea multidimensional smoothing kernel would be a three-dimensional impulse
in frequency-wavenumber space, as shown in Equation 4.3. Spatial data collection isvery

V

kX (rad/m)

Figure 4.5 Array Smoothing Function for Five Sensor Circular Array. A higher density of
contour lines indicates larger magnitudes. Notice the large sidelobes which
effectively control aliasing in the wavenumber domain. Other quadrants of the
ASF are symmetric due to the underlying symmetry of the array geometry.
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limited, and therefore, the actual smoothing kernel must be optimized through judicious
sampling patterns and sensor weights. The convolving kernel in the three-dimensional f-k
domain is called the array pattern (Johnson and Dudgeon, 1993), array response (Aki and
Richards, 1980), or array smoothing function (ASF), and equals the Fourier transform of
the weighted sensor array

S
W(K) = g w; exp(jk %) (4.12)
i=1

where w; = the weight of thei™ sensor. In addition, the squared magnitude of the ASF
equals the Fourier transform of the weighted coarray, written as
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Figure 4.6 Slice Along ky-axis and ky-axis of the Five Sensor Circular Array Smoothing
Function. The array spectral smoothing characteristics as a function of ky
(rad/m) (dashed line) and ky (rad/m) (solid line) are shown.
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W()P? =& wic)e(c)elk* (4.13)
C

where w(c) = the weight applied to a specific spatial lag vector c. The ASF smoothes the
power spectrum, controls resolution in wavenumber, and determines the relative heights of
sidelobes. Figure 4.5 shows a plot of the ASF for the 5 sensor circular array. The ASF is
symmetric due to the underlying symmetry of the array, and large sidelobes occur on a
regular pattern. The persistent clown pattern is due to the well-known Rosetti Effect,
discovered by Doc Brown while working on the flux-capacitor (David Wheeler, personal
communication). Placing the sensorsin aregularly spaced pattern is not always the
optimum arrangement. Figure 4.6 shows a slice along the ky-axis and ky-axis of the ASF.
A large sidel obe, which should be avoided, occurs at approximately k, = 0.6 rad/m.

The ASF can also be interpreted as a bank of multidimensiona bandpassfilters. The
passband corresponds to the mainlobe dimensions, and the sidel obes control the stopband.
The bank of filters are matched to particular frequency-wavenumber pairs and attempt to

1.5}

©
o1

y distance (m)
o
o o

1
[ —

-1.5}

-15 -10 -5 0 5 10 15
x distance (m)

Figure 4.7 Sixteen Sensor Uniformly Spaced Linear Array (Spacing = 2 m between each
sensor).
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Figure 4.8 Coarray Corresponding to the 16 Sensor Uniform Linear Array Shown in
Figure 4.7

pass any plane wave propagating at that pair with unity gain, while suppressing energy and
noise propagating from any other directions and frequencies.

4.4.2 Steering Vector
The power in particular f-k pairsis determined by steering the array toward various
directions and possible phase velocities. The array is steered with exponential phase shift
vectors determined by trial wavenumbers k

e(k) =[exp(- jk x1) exp(- jkx2) - exp(- jkxxg)]" (4.14)

where e = phase shift vector associated with atrial k. The array is steered in many
directions, scanning the wavefield for possible sources of energy. The power in a particular
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f-k pair is estimated by multiplying the measured spatiospectral matrix by the phase shift
vector and summing the total power over al sensors.

4.5 Freguency-Wavenumber Power Spectrum Estimators

Just as any reasonable temporal signal can be represented as the superposition of
monochromatic complex exponentials (i.e., a Fourier spectrum), any reasonable
gpatiotemporal signal may be represented as the superposition of monochromatic (single f-k
pair) plane waves. The power spectral density (PSD) estimation problem requires designing
either a one-dimensional or three-dimensional spectral filter with optimum capability of
isolating asingle frequency or asingle f-k pair as shown in Equation 4.3. Data collection is
always constrained, i.e. infinite datais never available, and the spectral filter must be
optimized by adjusting the weighting function and the sampling characteristics.

4.5.1 Time Domain Beamformer
The oldest array signal processing agorithm is the time domain beamformer, or
delay-and-sum beamformer. If asigna propagates across an array and is present in al the
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Figure 4.9 Array Smoothing Function for the 16 Sensor Uniform Linear Array
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sensor outputs, delaying the output of each sensor appropriately and summing the results
will reinforce the underlying signal, while diminishing the effect of noise. Choosing the
delays optimally will focus the array on energy propagating from a particular direction

(Johnson and Dudgeon, 1993). Allowing the sensors to be weighted, the delay-and-sum
beamformer equals

S
2(t) = & wiyi(t- D) (4.15)
i=1

A0 |
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Figure 4.10 The Two-Dimensional Array Smoothing Function for the 16 Sensor Uniform
Linear Array. The smoothing function shows the "all-pass’ nature of alinear

array in the unsampled spatial direction, i.e. the ky components are unfiltered
in this case.
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where z(t) = the beamformer output for an assumed vector velocity, y; = the signa plus
noise measured in the i™ sensor, and D; equal's the assumed time delay for the i" sensor,
which triesto align the signa in each of the sensors (Johnson and Dudgeon, 1993).

4.5.2 Conventional Frequency Domain Beamformer (FDBF)

Since seismic surface wave propagation tends to be dispersive and contain multiple
modes, the frequency domain problem is more appropriate and well defined. The term
beamforming refers to an array and signal processing algorithm'’s ability to focuson a
particular direction, and the mainlobe of an ASF is called a beam (Johnson and Dudgeon,
1993). The conventional FDBF uses uniform weighting of all sensors, w, =1form=1to
S. Since the weights are fixed, the ASF has a fixed mainlobe and sidelobe structure, and
bears remarkable similarity to the one-dimensional PSD estimation problem with a
rectangular data window.

The power in aparticular f-k pair is estimated by multiplying the measured
spatiospectral matrix by the phase shift vector and summing the total power over all
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Figure 4.11 FDBF Steered Response for the 16 Sensor Uniform Linear Array for a Single
Wave Propagating Along the Array Main Axis at a Wavenumber ky = 0.25
rad/m
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sensors. In vector notation, the power estimate is the quadratic form

Reppr(k, W) =€ (K)R(We(k) (4.16)

where H indicates the Hermitian transpose. The phase shift vectors try to align the array
with plane waves propagating from a given direction with a given phase velocity, and if it is
successful, a peak occurs in the f-k spectrum estimate.

The following example will illustrate the output of the FDBF. Consider a 16 sensor
uniform linear array, i.e. all sensors equally spaced at 2 m, as shown in Figure 4.7. The
corresponding coarray and array smoothing functions are shown in Figures 4.8 and 4.9.
Notice the clear grating lobes in the ASF at ky = 3.14 rad/m, which correspond to an
aliasing criteriaequal to p/dmin = p/(2 M) = 1.57 rad/m. In addition, negative frequencies
are physically meaningful in the spatial domain, and Figure 4.9 shows the negative
wavenumber aliasing lobe for the linear array. Although the aliasing criteriafor the
uniformly spaced linear array are easily identified, unequal spatial sampling rates will
introduce difficulties in estimating an exact aliasing criterion. A two-dimensional view of
the ASF is shown in Figure 4.10, and clearly shows the inability of linear arrays to filter
wavefieds in directions different from the array main axis, unless the energy propagates
with a known, single velocity.

Consider a synthetic wavefield consisting of a single propagating signal at
wavenumber ky = 0.25 rad/m and frequency = 10 Hz. Figure 4.11 shows the FDBF spatial
power spectrum estimate. Scanning the wavefield for power, a peak in the power output
occurs at wavenumber = 0.25 rad/m, and a grating lobe peak occurs at wavenumber = 3.4
rad/m. The wavenumber spectrum past ky = 1.57 rad/m would be removed due to the
aliasing criterion, but it is important to remember that the aliasing lobes are important
because no spatia anti-aliasing filter is implemented.

4.5.3 Minimum Variance Distortionless Look (MVDL)

The fixed ASF structure is the primary disadvantage of the FDBF. Capon's MVDL
method (Capon, 1969) adaptively alters the weights of the sensors to optimize the
characteristics of the f-k smoothing kernel at each frequency and wavenumber pair. The
MVDL method, contained in alarger class of constrained optimization methods, attempts
to pass a plane wave with given f, and ko undistorted (i.e. with unity gain) while minimizing
the beamformer power outpuit.

To simplify the problem, the independent variable will be assumed real-valued. The
constrained optimization problem is formulated as

min w(w) 7 R(w)w(w) subjectto w(w) ek g) =1 (4.17)

where ko = the wavenumber vector of interest. The constraint imposes a unity gain for the
frequency-wavenumber pair of interest, while the weights are chosen to minimize power
output from all other portions of the spectrum. The Lagrangian, suppressing dependence
on frequency and wavenumber to ssmplify notation, is
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L=w"Rw+l (WHe- 1

(4.18)
Taking the gradient with respect to the weight vector w yields
lWHRW = 2Rw :J
fw :
y P 2Rw+le=0 (4.19)
:
lI (WHe- D=lel
w
yielding the optimum weight vector solution
w:-%| R le (4.20)

Constraining the Lagrange multipliers| to be real, utilizing the property that the
gpatiospectral correlation matrix R(w) is Hermitian symmetric, and using the constraint

wHe=1 (4.21)

| =- (4.22)

Substituting the Lagrange multipliers from Equation 4.22 into Equation 4.20, the
optimum Capon MV DL spatiospectral weight vector is

-1
R(wW k
wmvoL K,W) = — ) e_(l) (4.23)
e (k)R(w) “e(k)
and the output power of the MV DL estimator is
1
RvvoL (K,w) = (4.24)

e (k)Rw) te(k)

The weight vector is optimized for each trial w-k pair, changing the mainlobe and sidelobe
structure to minimize the leakage of power from more remote portions of the spectrum, and
the weights do not have to be determined prior to calculating the power estimate
(McClélan, 1997). The MVDL power estimate only requires an additional matrix inversion
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compared to the FDBF. The MV DL beamformer exhibits greater resolution in many cases
due to the adaptive nature of the wavenumber filter (Capon, 1969), but in some cases, the
resolution is the same or less than the conventional FDBF (Seligson, 1970).

Figure 4.12 shows the MV DL output for the synthetic example presented in the
previous section, with asingle signal propagating with wavenumber ky = 0.25 rad/m and
frequency = 10 Hz. Compared to the FDBF, the MV DL method yields a much sharper
signal related peak and a flatter, suppressed background spectrum level.

4.5.4 Linear Prediction
Linear prediction, a parametric-based spectrum estimation technique, models the
output of a selected reference sensor as the weighted, linear combination of all other sensor
outputs. The output at the reference sensor is given by
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Figure 4.12 Power Output for the Minimum Variance Distortionless Look (MVDL)
Method for a Single Wave at ky = 0.25 rad/m Propagating Along the Main
Axis of the 16 Sensor Uniform Linear Array. The MVDL output is shown
with the dark line, and the FDBF output is shown with the light line for
reference.
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Figure 4.13 Power Output for the Linear Prediction Method for a Single Signal with
Wavenumber ky = 0.25 rad/m. The linear prediction output is shown with
the dark line, and the MV DL (dashed line) and FDBF (light line) estimates
are shown for reference.

s, W= & WeSg (W) (4.25)
0 st's,

where s, = the reference sensor, ws = the complex-valued linear predictive weights, and Ss
= the Fourier spectrum of a data vector from sensor s. Introducing a column vector ds, of

length S, which is a zero vector except for aonein the ;" position, the optimum linear
predictive weight vector equals

R(W) *ds,
H -1
d 5 R(w) dS0

W(W)Lp = (426)
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The linear predictive weights represent a model of the measured wavefield, expressing all
propagating signals ssmultaneously (Johnson and Dudgeon, 1993). In contrast to the
MV DL method, the linear predictive weights do not depend on propagation direction.
Using concepts of autoregressive spectral analysis and the steering vector, the steered
response of the linear predictive model is (Johnson and Dudgeon, 1993)

.0.5

€ H -1 u
édSOR(W) dso a

sat! R ek g

ALp(k.w) = (427)

In some cases, the linear predictive steered response gives narrower signal peaks
than the MV DL, but also suffers from several drawbacks. Compared to the previous
methods, the linear predictive method contains significant sidelobe ripple. Additiondly, a
detection statistic is difficult to define precisely. When applied to some typically
encountered problems, i.e. multiple, superposed propagating signals or additive noise in the
measurements, modeling inaccuracies begin to deteriorate the method’ s prediction abilities.
Modeling errors become increasingly detrimental as the signal-to-noise ratio becomes
smaller (Johnson and Dudgeon, 1993).

The results of the linear prediction method, in typical experimental measurements,
will depend on the choice of reference sensor. In fact, the choice of reference sensor may
have dramatic results on the estimated spectrum (Johnson and Dudgeon, 1993). Although
thisis not ideal, the linear predictive method can be used in conjunction with other methods
when anayzing complex seismic wavefields, and in simple cases with only a single mode,
the method allows increased resolution than MV DL due to narrower signal related peaks.

Figure 4.13 shows the linear prediction output for the synthetic example presented
previously, with asingle signal propagating with wavenumber ky = 0.25 rad/m and
frequency = 10 Hz. For theideal case in the example, the linear prediction output is very
similar to the MV DL method, coinciding with the MV DL estimate except for more sidelobe
ripple. The linear prediction method displays superior resolution than the FDBF.

4.5.5 Eigenanalysis Methods

Eigenanalysis finds gpplication in awide array of engineering problems, and
fundamentally refers to the concept of determining a natural coordinate system for a given
problem. In soil mechanics, the principal stresses acting at a point in aloaded body equal
the eigenvalues of the symmetric stress matrix (Harr, 1987). The connection between linear
operators and linear time invariant (LTI) systems yields a much used relationship in digital
signal processing: the eigenvectors of LTI systems are complex exponentials. This link
between spectral analysis and eigenanaysis provides tremendous insights and benefits for
signal processing spectrum estimation problems.

The power of eigenanalysis stems from the ability to recast a problem into a more
powerful mathematical framework. Recalling that the spatiospectral correlation matrix is
made of both signal and noise components, the eigenanalysis methods vary depending on
whether signal, noise, or signal and noise information isincluded. The signal and noise
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subspaces will first be introduced to help interpretation of the methods that follow. Then,
specific eigenanalysis methods will be introduced, alowing a gradual progression from the
theoretically appealing Pisarenko solution to the more robust, practical Multiple Signal
Classification (MUSIC) method. Finaly, the MVDL method will be recast as an
eigenanaysis problem.

4.5.5.1 Signa-Noise Subspaces
The spatiospectral correlation matrix may be expanded as

S
RW) = & | (wW);v(w); v(w)! (4.28)
i=1

wherev; = the " eigenvector, corresponding to the i eigenvalue| ;. Additionally, the
inverse of the spatiospectral correlation matrix may be expanded as

S
R™Lw) = & I (w)j v(w); v(w)! (4.29)
i=1

Either expansion may be truncated, and since signal and noise subspaces are orthogonal,
especialy useful truncations occur with the separation of the signal and noise subspaces as

Ng S
RW) =& 1 (Wi v(w) v+ & 1 (w; v(w); viw)!? (4.30)
i=1 i=Ng+1

where Ns = the number of signals present and S = the number of sensors. The first term on
the right includes the largest eigenvalues and corresponding eigenvectors and corresponds
to the signal subspace, and the second term on the right includes the (S-Ns) smallest
eigenvalues and corresponding eigenvectors and corresponds to the noise subspace. The
noise eigenvectors span the noise subspace, and the signal eigenvectors span the signal
subspace. Some of the most effective signal prediction agorithms result from looking
where the signals are not, i.e. only considering the noise subspace.

4.5.5.2 Pisarenko Harmonic Decomposition
In 1973, Pisarenko demonstrated that the frequencies of several complex

exponentials in white noise could be determined from the eigenvector corresponding to the
smallest eigenvalue of the autocorrelation matrix (Hayes, 1996). Although the method does
not always work well in practice, the result and derivation yield insight into the more recent
and robust eigenanalysis methods. Assuming the wavefield is composed of a sum of Ns
complex exponentials in white noise, the Pisarenko Harmonic Decomposition uses an (Ns
+1) x (Ns +1) spatiospectra correlation matrix, which means the noise subspace dimension
isone. The noise subspace for a particular frequency is spanned by the eigenvector viyn(w),
corresponding to the smallest eigenvalue | n(w). Denoting the signal vectorsby n; fori =1
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to Ns, which are plane waves propagating with frequency w and wavenumber K, Vin(W)
will be orthogonal to each of the signal vectors,

N v min (W) = 0 i=12...,Ng (4.31)

The magnitude of the spatial discrete Fourier transform of vi,in(W)

S .
VKW = § Vminw)e % (4.32)
i=0

will equal zero at the locations of the frequency-wavenumber pairs corresponding to
propagating signals. Using the previoudly discussed steering vector e(k), an f-k estimation
function can be formed as

Pprp (kW) = L (4.33)

2
€ )V min (W)

The estimation function can only be used as a direction and velocity estimator and is called
a pseudospectrum. If desired, the power in particular f-k pairs may be found by solving a
set of linear equations (Hayes, 1996).

Although the Pisarenko Harmonic Decomposition offers a theoretically pleasing
result for f-k pair estimation, in practice the method encounters some difficulties. First, the
number of signals present must be known, which is difficult when inexact spatiospectra
correlation matrix estimates are used. Additionally, the method assumes that the additive
noise is white, which may not be the case in practice (Hayes, 1996).

4.5.5.3 Eigenvector Method
The eigenvector method creates a steered response using a truncated
eigenexpansion of the inverse spatiospectral correlation matrix. Including only the
eigenvectors corresponding to the noise subspace, and weighting them by their respective
eigenvalues, the inverse spatiospectral matrix is estimated as

S
REZW= & 17 wvimwyv w) (4.34)
i=N +1

The power estimate from the eigenvector estimator equals

1

Pey (k,w) =—— 1
e(k)" R(w) gy e(k)

(4.35)
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The equation isidentical to the MV DL equation, except the eigenvector method’ s truncated
eigenexpansion of theinverse Rg, has replaced the estimate of the entire inverse
gpatiospectral correlation matrix.

4.5.5.4 Multiple Signal Classification (MUSIC)

In some cases, weighting the eigenvectors by their corresponding eigenvalues may
not work as well as giving all eigenvectors equal weights. The Multiple Signal
Classification (MUSIC) method weights al eigenvectors equally in the noise subspace
truncated eigenexpansion, yielding a truncated spatiospectral correlation matrix equal to

S
R'Mlus.c(w)=__§1 r(w)iv(w)i“ (4.36)

The power output from the estimator is

1
R k,w) = 4.37
Music (K, w) ORI oo (ek) (4.37)

Figure 4.14 shows the MUSIC output for the synthetic example with asingle signa
propagating with wavenumber k, = 0.25 rad/m and frequency = 10 Hz. The MUSIC
method coincides amost identically with the MV DL method, except for dightly lessripple
at portions remote from the signal. Compared to the FDBF for this one signal example, the
MUSIC method exhibits much greater resolution and sidel obe contral.

4555 MVDL Interpreted as an Eigenanalysis Method
Capon’'s MVDL method may aso be interpreted in terms of eigenanalysis, and in

fact, the manipulation of the eigenvalues creates the appealing and adaptive characteristics
of MVDL in comparison to the FDBF. The MV DL uses the entire eigenexpansion of the
inverse spatiospectral correlation matrix. ldentical eigenvectors span the matrix and its
inverse, while eigenvalues in the spatiospectral correlation matrix yield reciprocal valuesin
the inverse matrix (Johnson and Dudgeon, 1993). Therefore, large eigenvalues yield small
eigenvauesin the inverse, and small eigenvauesyield large eigenvaluesin the inverse. The
quadratic form in the denominator of the MV DL formula now becomes clear, since the
MVDL denominator will have small values where the FDBF has large values due to the
reciprocal nature of the eigenvalues.

4.5.5.6 Principal Components
The previoudly presented eigenanaysis methods have focused on the noise subspace,
searching for signals orthogonal to the noise. An alternative viewpoint focuses only on the
signal subspace, attempting to diminish the effects of noise. Recall that the spatiospectral
correlation matrix can be expanded as
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Ns

S
RW) =& | wW)ivwiviw)! + & 1 (w);v(w) vw))!
i=1 i=NS+1

where Ns = number of signals present in the wavefield. The elgenexpansion can be
truncated after including only the largest Ns eigenvalues and their corresponding
eigenvectors, yielding

Ng
RW) =& | ; w)v(w); v(w) (4.38)
i=1

Once the principal components estimate of the truncated spatiospectral correlation matrix or
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Figure 4.14 Power Estimate from MUSIC Due to a Single Wave Propagating with ky =
0.25 rad/m. The MUSIC method is shown with the dark line, and the MV DL
(dashed line) and FDBF (light line) estimates are shown for reference.
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matrix inverse has been formed, severa different advanced spectrum estimators may be
implemented.

4.5.6 Parametric Methods

Knowing the model of the process under study would seem to add significant
information. In fact, if the model can be determined, some of the highest resolution
spectrum estimates can be obtained from parametric based methods. The most common
models are autoregressive (AR), moving average (MA), and autoregressive moving average
(ARMA). The models can be interpreted as filters, and therefore, the parameters sought are
thefilter coefficients. The linear prediction method presented previously correspondsto a
parametric model, where the parameters of the model are the desired optimum weights.

Although parametric methods yield improved resolution in cases where the mode is
known, the methods yield spurious peaks and incorrect estimates in cases where an
incorrect model isimplemented. If the model order istoo small, the estimate will suffer
from poor resolution. Spectral line splitting and spurious peaks may result from using a
model order that istoo large (Hayes, 1996).

4.5.7 Introduction of Sensor Calibrations
Introduction of sensor specific calibrationsis easily achieved in the power spectrum
estimators. Creating a calibration weighting matrix W with the complex-valued sensor
calibrations along the main diagonal, the FDBF power estimate equals

Progr (k,w) =€ (k)W wW)Rw)WH (w)e(k) (4.39)

The sensor calibration matrix for the alternative spectrum estimators enters in an analogous
form.

4.5.8 Summary of Frequency-Wavenumber Power Spectrum Estimators

Table 4.1 gives a summary of the multidimensiona power spectrum estimation
methods. The conventional FDBF has a fixed array smoothing function. The adaptive
MVDL and linear prediction methods explicitly design an optimum spatia filter, but the
MVDL weight vector depends on both the temporal frequency and wavenumber, while the
linear prediction weights depend only on the temporal frequency. The eigenanalysis
methods are categorized depending on the type of truncated R(w) estimate. The noise
subspace methods use the eigenvectors corresponding to the smallest eigenvalues, and the
signal subspace methods use the elgenvectors corresponding to the largest eigenvalues. The
eigenanaysis methods differ significantly in their conceptual motivation — the noise
subspace methods attempt to find signals propagating orthogonal to the noise, while the
signal subspace methods attempt to reduce the effect of noise by looking only at the signal
subspace.
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Table 4.1 Multidimensional Power Spectrum Estimation Methods

f-k Estimator | Design | Output | Comments
Conventional

FDBF Arbltrary choice of WelghtS H:DBF(k , W) — eH (k)R(W)e(k) - Fixed array pattern
Adaptive

Constrained Optimization

MVDL

R(w)™ te(k)

1

Ruvpr (k,w) =

- Uses entire inverse R(w)

Wyl (K,w) = - H 1 estimate
e (K)RW) Te(k) SR el = k)
Parametric
Linear Prediction Rw) 1d ; ) -0.5 - Reference sensor choice
W(W) | p = ﬁ _ S dSHO RW) 'dg, i affects power estimate
dg R(w)™"ds, Rpkw) =g— SINLY . w = f(w)
gdSOR(W) oK) g
Eigenanalysis - Noise Subspace
: > — .
Pisarenko niH XV i (W) = 0 i=12,...,Ng Roup (K, W) = ‘eH (K)V i (W) E;r:flésgnals orthogonal
min
Eigenvector ) S . _ 1 - Weights noise subspace
Ry W)= & 17 wyvi@viw) | Pevkw)=—-opF -1 eigenvectors by
i=Ng+1 e(k) R(W) gy &(k) elgenvalues
MUSIC S 1 - Weights dll noise
-1 _ 9 H = .
Ryviusic(W) = a v(w); v(w); Awusic(k.w) e (KR c(wek) | subspace eigenvectors
1=Ns+1 equally

Eigenanalysis - Sgnal Subspace

Principa Ns
Components

i=1

R(w) = é [ (W)v(w); V(W)iH

- Uses signa subspace

truncated R(w) or R'l(w)
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Figure 4.15 Sixteen Sensor Circular Array with Radius Equal to 10 m

4.6 Two-Dimensional Synthetic Wavefield Example
The following synthetic wavefield example will introduce the two-dimensiona

wavenumber spectrum in anticipation of experimental results in Chapter 8, and show the
increased resolving power of the MV DL method in the example presented. Consider a
single plane wave, characterized by a wavenumber vector ky = -0.25 rad/m and ky = -0.4
rad/m and temporal frequency = 10 Hz, propagating past a circular array of 16 sensors.
Figure 4.15 shows the array geometry, and Figure 4.16 shows the corresponding coarray.
The ASF isshown in Figure 4.17, and a dlice along the ky axis is shown in Figure 4.18.

Notice alarge sidelobe occurs at an approximate wavenumber ky = 1.95 rad/m.

The resulting power output of the FDBF is shown in Figure 4.19, and the actual
signal location is shown with an asterisk. The FDBF estimates the correct wavenumber,
exhibits a large radius around the peak power spectrum estimate, and has some sidelobe or
background energy in the upper right portion of the spectrum. The MV DL power
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spectrum estimate, shown in Figure 4.20, also predicts the correct wavenumber vector,
while exhibiting a significant decrease in the radius around the signal peak. Additionaly,
the MV DL method has reduced spectrum energy estimated at areas remote from the
actua signal energy. The increased resolution of the MV DL method is evident in this
synthetic wavefield example.

20 F ' . ’ . ' g
15l . . . . . |
10 | L] . . . L] L] ) R . L] i
- 5 | . * . . * . i
é | : . ¢ .. | | .. * L] : |
> . .
E 0 -0 . . . . . ° . Y -
8) . ° ¢ ° o o ° ¢ ° °
_I -5 B L] L] L] L] b
-10 R . L] . L] . . L] o L] . ]
-15} ) . ) |
20}, . | . ' . | . .
-20 -10 0 10 20
Laginx (m)

Figure 4.16 Coarray for the 16 Sensor Circular Array Shown in Figure 4.15
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Figure 4.17 Array Smoothing Function for the 16 Sensor Circular Array
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Figure 4.18 Slice of the Array Smoothing Function Shown in Figure 4.17 Along the ky
Axis. Dueto symmetry and the orientation of the array, the orthogonal dice
along the ky axisisidentical to the slice shown.
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Figure 4.19 Frequency-Wavenumber Spectrum Estimate from the FDBF for a Single
Wave Propagating with a Wavenumber ky = -0.25 and ky = -0.4 rad/m and
Frequency = 10 Hz. The asterisk indicates the true propagation
wavenumber.

4.7 Spatial and Temporal Domain Parallels

Many parallels between the one-dimensiona and multidimensiona problems exist.
The parallels not only help extend the signal processing algorithms and theory to problems
with larger dimensions, but also emphasize the primary functions and parameters of
interest. Table 4.2 shows the functions and parameters outlined in Chapters 3 and 4 for
the one-dimensional and multidimensional cases.
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Figure 4.20 Frequency-Wavenumber Spectrum Estimate from the MVDL Method for a
Single Wave Propagating with a Wavenumber ky = -0.25 and ky = -0.4 rad/m
and Frequency = 10 Hz

4.8 Summary
Spatiotemporal signal processing allows a great deal of information to be extracted

from spatial wavefields. The primary problem in multidimensiona signal processing
remains the same as in the one-dimensiona case -- design an optimum filter to sift out
desired information from experimental measurements. Several power spectrum estimators
were discussed. The frequency domain beamformer (FDBF) offers the easiest method of
implementation, but in many cases, more advanced methods, such as MVDL, linear
prediction, and MUSIC, offer the optimum solution.
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Table 4.2 Temporal and Spatiotemporal Signal Processing Parallels

Temporal Spatiotempora
Lag Domain tsand N Coarray
Weight Vector, w[n] Sample weight Sensor weight
Function of Interest Correlation r R(w)
Simple Power Periodogram FDBF
Spectrum Estimate
Approximate Resolution DW= 2p Dk = 2p

Window Length Array Length
Aliasing p - p

Wimax =~ K(Z) max = =

mex ts dmin(2)

Simple wavefield examples, containing only a single signal, showed the
applicability of the algorithms, and displayed the superior power of the advanced spectrum
estimation methods. In practica applications, the wavefield may contain non-ideal
components that deteriorate the performance of any or al of the spectrum estimators. The
noise field characteristics may be white or colored, i.e. correlated between sensors, and
noise characteristics may differ for various spatia and temporal scales. Multipath
propagation adds an additional concern, since the same signal may produce two closely
spaced and correlated signals, which will deteriorate the performance of the spectrum
estimators, especially adaptive methods that seek to null out competing signals.

The array smoothing function, analogous to the one-dimensional smoothing kernel,
controls the spectral properties of the array. The spatiotemporal resolution and aliasing
criteriaare very similar to the one-dimensional temporal criteria, relying on the maximum
and minimum spatial sampling lag. If the array smoothing function has poor sidelobe
control, then sidelobe interference becomes a great concern in wavefields containing
multiple signals. In previous geotechnical spatia array processing applications, the array
smoothing function has received little attention and analysis. To adequately analyze the
power spectrum of a spatiotemporal wavefield, especially when sampling with alimited
number of sensors, the array smoothing function must be analyzed to determine where
large sidelobes and grating |obes occur.



