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3 One-Dimensional Signal Processing

_____________________________________________________

Today, “flow”, or its equivalent, “continuity”, is so unclear as to be almost
devoid of meaning.

E.T. Bell, Men of Mathematics

3.1   Introduction
Although continuous domain filter theory has an earlier heritage, many engineering

problems necessarily deal with discrete data due to the ubiquitous use of digital computers.
The underlying theory of random processes and Fourier transforms allows a great deal of
information to be extracted from time series data.  Transforming to the frequency or
spectral domains allows processes obscured in the temporal domain to be easily identified.
The Fast Fourier Transform (FFT) is a standard tool in many disciplines, but to solve
problems dealing with random processes, a more in-depth knowledge of the Fourier
transform and its statistical properties is required.  Furthermore, different structures of the
Fourier transform yield additional insight into the underlying operations and properties of
the transform.  The present chapter covers important properties of Fourier theory, but the
content is limited to ideas either necessary to understand or to generalize a later problem.

3.2  Fourier Series
A periodic function f(t) can be written as a linear superposition of complex

exponentials
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and the weighting coefficients are
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The Fourier series is a series of equidistant impulses in the spectral domain, each weighted
by its respective coefficient Cn (Papoulis, 1962).  The expansion rests on the orthogonality
of the trigonometric sine and cosine functions.  If the expansion is truncated before all
possible harmonic components have been estimated, the truncated expansion corresponds to
a Gaussian least squares fit of the data up to that harmonic.

The Fourier series suffers from several characteristics that limit its application to
many engineering problems encountered in practice.  First, the function must be periodic.
The Discrete Fourier Transform (DFT) duplicates the Fourier series concept for aperiodic
functions that in reality have no true Fourier series representation, exploiting the periodic
replication of a finite time series.  Second, the Fourier series can only be used as a
theoretical guide when analyzing natural phenomena stemming from random processes.

3.3  Fourier Transform
The Fourier transform is usually derived as a special case of the Fourier series, but

the derivation can also proceed from the Fourier transform to the Fourier series.  Random
processes necessitate looking at the Fourier transform as the more general solution, since
the Fourier series really represents an ideal rarely found in practice.  In this section the
Fourier transform is derived and the Fourier series is placed in perspective as the limit of a
sequence of transforms.

Physical possibility is a valid sufficient condition for the existence of a Fourier
transform (Bracewell, 1986).  Any reasonable, arbitrary signal can be represented as the
superposition of weighted complex exponentials.  The Fourier transform extends the
applicability of Fourier theory by allowing any function to be transformed into its spectral
components.  Links exist between operations performed in one domain and the resulting
operations in the other domain.  Sampling and periodic replication are an important link
between the two domains.  Sampling in time implies periodic replication in frequency, and
periodic replication in time implies sampling in frequency.

The Fourier transform will be introduced first in the continuous domain, and the
Fourier integral discussed.  The Continuous Time Fourier Transform (CTFT), although not
applicable when dealing with discrete data, will be useful when discussing smoothing
kernels and the underlying properties of Fourier domain operations.  The Discrete Time
Fourier Transform (DTFT) will then be discussed for its additional usefulness when dealing
with time limited signals.  Last, the Discrete Fourier Transform (DFT) will be introduced.
The Fast Fourier Transform (FFT) will be covered briefly, with no details pertaining to the
efficient implementation alternatives.
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     3.3.1  The Continuous Time Fourier Transform (CTFT)
The CTFT has several essentially equivalent definitions, with one definition given by
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where F(ω) is the Fourier Transform of f(t).  The inverse CTFT allows the synthesis of f(t)
from its spectral components as
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The symmetry of the two domains is evident, and the factor of 1/(2π) can be introduced in
several ways.

The CTFT allows continuous time measurements to be transformed into a
continuous frequency spectrum.  The infinite limits on the integrals assume infinite
measurements from the past and future are available, which is never possible in practice.
The infinite dimensional frequency space also introduces obvious questions regarding the
computation of the spectrum.  In geotechnical engineering problems, the CTFT is rarely
implemented, since processes are usually sampled discretely.  The CTFT offers the clearest
view into the nature of the transform, and allows much easier interpretation of the theory
and spectral properties of the underlying transform.

     3.3.2  The Discrete Time Fourier Transform (DTFT)
The DTFT is the primary theoretical guide for investigating Fourier transform

spectral operators, and, in practice, the DTFT is also very useful when dealing with time-
limited processes.  Sampling in time does not necessarily prohibit the engineer from
obtaining a continuous spectrum.  The DTFT is the form of the Fourier transform that
allows discrete time data to be transformed into a continuous spectrum, and is given by
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where f[n] equals the samples of the continuous time process f(t) at sampling indices n.
Notice the need for an infinite amount of data in the summation, which is impossible unless
the signal is time-limited.  When the process is time-limited, as in a transient or impulse
response, the process f[n] is measured in its entirety, since it is zero before and after the
transient.  The DTFT spectrum is periodic with a period of 2π.  The actual ranges of the
spectrum are determined by the sampling rate fS.

The synthesis formula for the DTFT is given by
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Notice that only one period of the spectrum needs to be integrated due to the periodicity of
the DTFT frequency spectrum.

     3.3.3  The Discrete Fourier Transform (DFT)
The DFT is the form of the Fourier transform most often implemented in applied

engineering, due to its simplicity and efficiency.  Entire books have been written on the
subject, and a larger treatise should be consulted for further information regarding the
properties and theory of the DFT, for example, Oppenheim and Schafer (1989).

Conceptually, the DFT samples the DTFT at N equally spaced points along the unit
circle in the z-transform complex plane.  The DFT is most often written as
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where N equals the total number of samples collected, k equals the spectral domain index,
and
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The synthesis equation is

∑
−

=

−=
1N

0k

kn
NW]k[F

N

1
]n[f (3.10)

The DFT replicates the temporal sequence periodically to obtain the spectral components.
Therefore, since the temporal signal is discrete and periodic, the frequency spectrum is
discrete and periodic, with a period N.

The term Fast Fourier Transform (FFT) encompasses many efficient algorithms
available for computing the entire DFT of a sequence.  Through exploitation of the
periodicity and symmetry of the sequence WN, the class of FFT algorithms can be orders of
magnitudes more numerically efficient in terms of multiplications and additions compared to
competing algorithms.  The FFT decomposes the DFT of a sequence of length N into
successively smaller and smaller DFTs.  The most common FFT algorithms fall under the
categories of decimation-in-time and decimation-in-frequency.  For a more complete
discussion of the FFT, see Oppenheim and Schafer (1989).  Although the FFT allows
considerable computational savings when calculating all N points of the DFT, other
algorithms are more efficient at calculating only a portion of the spectrum, such as the
Goertzel and chirp transform algorithms (Oppenheim and Schafer, 1989).
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     3.3.4  Generalized Functions and Transforms in the Limit
Many mathematical properties are defined, and only exist, in terms of limits.  The

following discussion introduces the concept of a limit of a sequence of functions and
generalized functions, which will aid considerably in the interpretation and understanding of
spectral operators and Fourier transforms.  The discussion is brief, simplified, and intended
as an introduction for the geotechnical engineering field, in which generalized functions are
not commonly employed.  For more in-depth discussions, especially relating to engineering
analysis, see Bracewell (1986) and Papoulis (1962).  After introducing the concept of
generalized functions, the Fourier series is placed in perspective as the limit of a sequence of
transforms.

          3.3.4.1  Generalized Functions
The Dirac delta impulse is an important theoretical concept in many areas of

engineering, including point sources and point masses, and is defined as (Bracewell, 1986)
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The Dirac delta falls outside the realm of analysis typically encompassed by the term
function, and instead falls into the category of generalized functions or the theory of
distributions (Papoulis, 1962).  The Dirac delta will first be interpreted as the limit of a
series of functions, using the rectangular pulse, and the discussion will be extended to the
more encompassing meaning of a generalized function.

The simplest interpretation of the Dirac delta impulse is as the limit of a series of
increasingly brief, increasingly strong rectangular pulses, as shown in Figure 3.1.  As
defined by the integral in Equation 3.11, each impulse shown in Figure 3.1 has an area equal
to one.  The rectangular pulse is not the only function which produces a sequence tending
to the Dirac delta impulse in the limit.  Gaussian, triangular, and sinc functions all yield a
Dirac delta impulse in the limit, but the properties of the different functions, such as
existence of derivatives, make them useful in different types of analyses (Bracewell, 1986).

Bracewell (1986) defines a generalized function as a regular sequence of particularly
well-behaved functions.  The definition imposes restrictive conditions on the derivatives and
asymptotic behavior of the members of the sequence of functions.  In the strict definition,
derivatives of all orders at all points of the function must exist and an  asymptotic decay
condition must be satisfied.  Several different sequences of regular, particularly well-
behaved functions may converge to the same generalized function, and the generalized
function actually consists of the class of all convergent sequences of functions.  Regarding
the most common functions of interest to signal processing, the rectangular pulse fails the
strict definition of a generalized function due to failure to meet the derivative existence
requirements, while the sinc function fails to meet the asymptotic decay criterion.  In
practice, the use of the sinc function as a generalized function is acceptable due to the finite
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length of commonly encountered signals (Bracewell, 1986).  The sinc function is the most
commonly used function in signal processing whose properties tend to the Dirac delta in the
limit.

          3.3.4.2  Fourier Series as the Limit of a Sequence of Fourier Transforms
A sequence must be absolutely summable to yield a uniformly convergent Fourier

transform (Oppenheim and Schafer, 1989), and therefore, a periodic function does not have
a Fourier transform.  Nevertheless, periodic functions are considered to have line
spectrums, and Fourier transform theory is broadened to handle functions with a line
spectrum by introducing the concept of transforms in the limit (Bracewell, 1986).

A transform in the limit is attained by modifying the periodic function with a factor
that may yield a function that possesses a Fourier transform (Bracewell, 1986).  The
following discussion takes a different approach to emphasize a few of the practical
considerations concerning Dirac deltas, windows, and Fourier transforms, and makes no
claim of mathematical rigor.  Figure 3.2 shows the sequence of Fourier transforms of a
single, 10 Hz sinusoid as the window length increases from 1 second to 80 seconds.  As the
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Figure 3. 1  Dirac Delta Impulse as the Limit of a Sequence of Rectangular Pulses.  A
sequence of increasingly brief rectangular impulses, all with area equal to one,
tending to the infinitely brief, infinitely high Dirac delta impulse.
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window length increases, the spectrum estimate progressively becomes narrower and
narrower, and if an infinite amount of data were available, the estimate would approach a
line spectrum in the limit.  Additionally, regardless of the window type, as the amount of
data tends toward infinity, the smoothing kernel will approach a delta impulse.

    3.3.5  Summary of the Fourier Transform
Table 3.1 summarizes the forms of the Fourier transform covered in Sections 3.3.1

to 3.3.3.  Although the FFT is used the most often in practice due to numerical efficiency,
the DTFT and the CTFT provide the most convenient framework for discussions about the
spectral properties of operators.

Figure 3. 2  Sequence of Fourier Transforms of a Single Sinusoid.  The sequence of
Fourier transforms for a single, 10 Hz sinusoid are shown for window lengths
of 1 second (dashed line), 2 seconds (light solid line), and 80 seconds (heavy
solid line).
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3.4  Temporal Domain
The most common one-dimensional signal processing problem involves temporal

data.  The format of the current section will highlight the most salient features of time
domain measurements, while also setting a foundation for a parallel interpretation in the
multidimensional case.  The sampling characteristics control the temporal lag domain, which
limits the frequency range available for spectrum estimation.  The weighting function offers

Table 3.1  Fourier Series and Forms of the Fourier Transform
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the greatest control over the spectrum estimation problem, as shown in Section 3.5.  The
primary function of interest in time domain measurements is the autocorrelation function,
which describes signal correlation over different temporal lags.

     3.4.1  Temporal Lag Domain
The procedure used to experimentally measure a temporal random process exerts a

great influence on the later power spectrum estimation problem.  The highest frequency
available for power estimation is determined by the sampling frequency, and the total
number of samples N determines the ability to resolve different frequencies.  The lag domain
refers to the sampling characteristics devoid of any actual experimental information.  The
sampling rate tS controls the redundancy of various temporal lags, and the total length of
data (N-1)*tS controls the longest temporal lag available.  An inherent tradeoff exists
between N and tS, which is described mathematically by the uncertainty relation.  In typical
temporal measurements, the sampling rate tS is constant.  Therefore, the temporal lag
domain forms a triangle centered at a temporal lag equal to zero.  Figure 3.3 displays an
example of the temporal lag domain for tS equal to 0.1 seconds and N = 10.
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Figure 3. 3 Temporal Lag Domain for tS = 0.1 Seconds and N = 10
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3.4.2  Uncertainty Relation
The bandwidth-duration product of a signal cannot be less than a certain minimum

value, preventing arbitrary specification of signals on the time-frequency plane.  The signals
may be brief and wideband (e.g. a temporal impulse and a white noise spectrum) or
monochromatic and temporally persistent (e.g. a temporally periodic function and a line
spectrum).  The usual form of the uncertainty relation is

π
≥∆∆

4

1
ft (3.12)

where ∆t and ∆f represent the equivalent duration and bandwidth (Bracewell, 1986).
Therefore, an inherent tradeoff exists between the temporal and frequency domains.

     3.4.3  Nyquist Sampling Rate and Aliasing
If sampled at a high enough rate, any reasonable, band-limited temporal signal can

be completely characterized in the frequency domain.  The necessary sampling rate, called
the Nyquist rate, equals two times the Nyquist frequency.  The Nyquist frequency of a
band-limited signal F(ω) is given by

Nyquistfor0)(F ω>ω=ω  (3.13)

If the process is sampled below the Nyquist rate, higher frequency components alias into
lower frequencies.

In reality, the frequency content of experimental measurements is not known until
after data collection.  Implementation of analogue anti-aliasing filters ameliorates aliasing in
the temporal data.  The concept of aliasing in the one-dimensional case is introduced in
anticipation of the much more difficult question of spatial aliasing, considered in the next
chapter.

     3.4.4  Weighting Function
A weighting vector w[n], or window function, applied in the temporal domain

affects the properties of the spectral operators. The spectral domain effects are discussed in
Section 3.5.  The effects of different weighting vectors may be analyzed without
consideration of experimental measurements.  Some common weight vectors applied in the
temporal domain are the rectangular, Bartlett, Hanning, and Hamming windows.  The
temporal weighting vector changes the relative importance of long versus short temporal
lags.  The tapering at larger lags decreases the relative weight given to measurements at
long lags, which intuitively seems correct, since fewer samples are obtained at longer lags
versus shorter lags.

     3.4.5  Autocorrelation Function
The primary function of interest to characterize a temporal sequence is the

autocorrelation function.  The autocorrelation describes the correlation of the measured
process with itself at various temporal lags.  For a sampling rate ts, the autocorrelation
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function covers lags up to the total time length of the data (N-1)⋅ts, where N is the total
number of samples.  The shortest and longest lags contained in the autocorrelation function
control the ability to resolve different frequencies and the maximum frequency at which the
power spectral density can be estimated.

The autocorrelation estimated from real-valued measurements equals

1Nto0)n(s)n(s
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where s(n) = signal measured at time index n, and )(rs l  = the estimated autocorrelation

function at time lag indexl .  )(rs l  for negative lags l  is determined by symmetry (Hayes,

1996).

3.5  Spectral Domain
The ideal spectrum estimating filter would be a Dirac delta impulse at the frequency

of interest, which would perfectly sift out a single frequency.  The sifting property
(Bracewell, 1986) of the delta function is not obtainable in practice, so engineers must
accept filters which approach the characteristics of the delta generalized function in the
limit.  The compromise is usually a form of the sinc function, representing a bandpass filter
with its center frequency matched to the frequency of interest

Estimating the spectrum of a temporal process may be viewed as designing a bank
of bandpass filters, with each filter centered at the frequency of interest.  Mainlobe width
controls resolution between closely spaced frequencies, and sidelobe height controls energy
leakage from more remote parts of the spectrum.  The temporal sampling and weighting
characteristics control the properties of the spectral filter, and when viewed as a filter design
problem, the temporal weighting function is the primary design variable.

The spectral filter design problem requires designing an optimum filter for extraction
of specific information relevant to a specific problem.  The optimum design will vary,
depending on the underlying process, e.g. bandwidth, frequency component separation, and
noise power, and the goals of the design.  Overall, a filter may be characterized as good if it
has a narrow mainlobe and good control of sidelobe heights.  The following sections will
discuss the ideal spectral filter, which requires infinite information and a deterministic
process.  Since infinite information is never available, the optimum design problem will be
generalized through the temporal weighting vector.

     3.5.1  Ideal Smoothing Kernel
Assume perfect, infinite-length measurements of a single, unit amplitude, single

frequency ω0 temporal wave are made with no noise.  The transform of the process would
produce a line spectrum.  The Fourier transform equals
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i.e. a unit impulse at the frequency ω0. The Dirac delta δ perfectly sifts out the frequency of
interest and represents the ideal smoothing kernel.  Graphically, the results are shown in
Figure 3.4.

     3.5.2  Integral Transform Smoothing Kernel
In reality, infinite length, perfect experimental measurements and the ideal sifting

property of the Dirac delta are not obtainable.  Engineers must compromise and accept a
filter approaching the sifting property of the Dirac delta in the limit. The general Fourier
transform (Equation 3.4) maps time to frequency with the following integral equation
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In practice, the underlying random process and the sampling rate tS constrain the available
data length.  The resulting discrete transform is given by
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where the hat indicates estimation, and N = total number of samples.  The equation can be
rewritten as
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Figure 3. 4  Graphical Representation of a Line Spectrum.  An infinite duration signal (left
panel) and the corresponding line spectrum (right panel).
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where w[n] = a weighting vector.  Notice the summation now extends over an infinite
number of samples.

Equation 3.18 explicitly shows the parameters the engineer controls in the
estimation process.  The underlying random process and sampling characteristics
completely control f[n], allowing external influence only when employing an active source.
The exponential kernel is an inherent characteristic of the Fourier transform.  Other kernels
may be considered, but for spectrum estimation involving complex exponentials, the Fourier
transform exhibits the greatest applicability.  Therefore, the weight vector w[n] represents
the only parameters the engineer exhibits complete control over.  In fact, the weight vector
and sampling characteristics completely determine the spectral filter characteristics.

     3.5.3  The Spectral Smoothing Kernel
The DTFT of the weight vector w[n]
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describes the spectral smoothing characteristics of the filter.  The estimated spectrum equals
the true spectrum convolved with the smoothing kernal W(ω).

The weight vector controls the filter mainlobe and sidelobe characteristics.  Two
commonly encountered windows are the rectangular and Bartlett windows.  Figure 3.5
shows two discrete time windows and their corresponding DTFTs.  The rectangular
smoothing function exhibits a narrower mainlobe width, but the Bartlett smoothing function
exhibits much greater sidelobe control.  The two windows show that the actual optimum
filter for a given process depends on the desired estimation parameters.  In the examples
shown, the rectangular window shows greater resolution and amplitude estimation
capabilities, while the Bartlett window shows greater ability to control wide band noise and
leakage from competing signals.

The most important characteristics of the smoothing function are sidelobe height
and mainlobe width, which control leakage of energy and resolution, respectively.  A typical
measure of resolution is the Rayleigh criterion (half of the main lobe width for symmetric
smoothing functions) or the full-width half-maximum (which measures the width at the
middle height of the mainlobe) (Johnson and Dudgeon, 1993). Another problem related to
resolution depends on the sidelobe height.  If a sidelobe is large, it will mask very small
signals found at remote portions of the spectrum.  The sidelobes control how portions of
the spectrum away from the mainlobe affect the power estimate at the frequency of interest.
The mainlobe and sidelobe structure can be modified with different choices of window
weighting functions and sampling characteristics.  A longer total length of data N for a
given ts decreases mainlobe width, but a longer ts for a given length N will decrease the
bandwidth available for power estimation.



One-Dimensional Signal Processing

48

3.6  Power Spectrum Estimators
A stationary random process can be characterized by a power spectral density

function (Capon, 1969).  The power spectrum and the autocorrelation function are Fourier
transform pairs.  Obtaining a statistically good estimate of the power in a random process is
the overriding goal of power spectral density (PSD) estimation.  Acceptable estimates rely
upon appropriate data properties as well as proper choice of window weighting functions.

The following discussion is necessarily brief, with only the concepts important to the
subsequent discussion of multidimensional spectrum estimation being presented.  The one-
dimensional frequency spectrum estimation problem controls resolution of frequency in the
multidimensional power estimation problem.  The PSD estimation problem requires
designing a one-dimensional spectral filter with optimum capability of isolating a single
frequency as shown in Equation 3.15.  Adjusting the weighting function and the sampling
characteristics allows problem specific optimization of the spectral filter properties.

If a rectangular window is applied to the data vector in the temporal domain, the
window weight vector applied to the autocorrelation function corresponds to a rectangular
window convolved with itself, forming a Bartlett window.  Therefore, the actual smoothing
kernel in the power spectral domain becomes a (sinc)2 function when using a rectangular
weight vector.  As discussed previously, the overriding goals of spectrum estimation are
sidelobe leakage control and mainlobe width.  This chapter will introduce basic spectrum
estimation techniques, delaying discussion of more advanced methods until Chapter 4,
which will deal with multidimensional spectrum estimation problems.
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Figure 3. 5  Window Choice and Spectral Properties.  The rectangular (light line) and
Bartlett (bold line) windows are shown in the left panel, and the magnitude of
their Discrete Time Fourier Transforms are shown in the right panel for
number of samples N = 7 and a sampling frequency of 50 Hz.
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     3.6.1  Fourier Spectra of Deterministic and Repeatable Signals
Although most naturally occurring processes produce random signals, in some

engineering applications, signals may be deterministic.  For example, impulse response tests
utilizing a repeatable source on a linear shift invariant system may be stacked in the time
domain to remove noise.  If the noise is statistically stationary with a zero mean, stacking
will reduce the noise variance.  In the limit, if all noise may be removed, the resulting signal
may be considered a deterministic realization of the system impulse response.  In active
SASW tests, experimental measurements may be stacked in the temporal domain to reduce
background seismic noise.

The advantage of deterministic signals lies in the ability to exactly characterize the
spectral components with the DTFT.  If noise remains in the temporal signals, assumptions
about the noise statistics must be made, and the resulting spectrum only approaches the true
process spectrum.  Stacking in the frequency domain will only reduce the variance of the
frequency power content estimates, without affecting noise power.

     3.6.2  Periodogram
If separate realizations of a process cannot be stacked without destroying the

underlying signal information, power spectrum estimation requires additional methods and
theoretical development.  An early power spectrum estimator for random processes is the
periodogram.  The periodogram is the Fourier transform of the autocorrelation sequence

)(rs l , producing the estimated power

∑
−

−−=
ω−=ω

1N

)1N(
mperiodogra )jexp()(r)(P s

l

ll (3.20)

where )(P mperiodogra ω
 
= the estimated power in the frequency ω.  Using the convolution

theorem and the Fourier transform of the data s(n) directly, the periodogram can be
expressed as (Hayes, 1996)
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where S(ω) = the Fourier transform of the data vector s(n) and the * indicates complex
conjugation.  The periodogram can be interpreted as a bank of bandpass or "matched
frequency" filters, each centered at a desired frequency, with the passband width equal to
the mainlobe of the smoothing function.  The periodogram is an early PSD estimation
procedure, and is easy to compute, but it exhibits limited accuracy, especially for short data
records (Hayes, 1996).  The left panel of Figure 3.6 shows an overlay plot of 10
periodograms of a single complex exponential in white Gaussian noise.

3.6.3  Bartlett’s Procedure
Averaging of several periodograms, or Bartlett's method, produces a better power

spectrum estimate in terms of statistical characteristics.  The power estimate is given by
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where B = number of blocks of data to be averaged, )(Pi
mperiodogra ω

 
= the periodogram

estimate from the ith block, Si(ω) = the frequency spectrum from the ith block, and the block
length L = N/B.  Averaging multiple periodograms sacrifices frequency resolution in
exchange for a reduction in the variance of the power spectrum estimate (Hayes, 1996).
The right panel of Figure 3.6 shows the Bartlett method estimate obtained from averaging
the 10 periodogram estimates shown in the left panel of Figure 3.6.

     3.6.4  Other Estimators
Using windows other than the rectangular window in the periodogram estimate

allow a tradeoff between resolution and sidelobe height.  Welch’s method refers to the
process of averaging periodograms modified with a window weight vector.  For fixed
length data sequences, the autocorrelation estimates at large lags receive the least number of
samples, and therefore, have the least reliability.  Windowing the autocorrelation sequence
applies smaller weights to the larger lags, decreasing their contribution in the periodogram
estimate.

3.7  Advanced Spectrum Estimation Techniques
Several additional spectrum estimation techniques are available.  The techniques

vary depending on the model and data correlation assumptions.  For example, the FFT
periodically replicates the sampled sequence outside the length from 0 to N-1.  In many
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Figure 3. 6  Periodograms and Periodogram Averaging.  Left Panel: Overlay of ten
periodogram estimates; Right Panel: Average of the 10 periodograms in the
left panel.
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cases, this will not be the optimal data model.  Additionally, all the previous spectrum
estimation techniques use a fixed filter structure for estimation, i.e. a fixed mainlobe and
sidelobe structure.  Adaptive techniques actually change the filter structure depending on
the observed signal and noise characteristics, allowing large gains in signal to noise ratios
and resolution in many cases.  Dynamic adaptive techniques represent algorithms that not
only update the filter depending on correlation estimates, but also update the correlation
estimates during measurements (Johnson and Dudgeon, 1993).  Although many of the
techniques are applicable to both the one-dimensional and multidimensional problems, a
complete discussion of the methods will be delayed until the end of Chapter 4, when the full
power of multidimensional vector notation may be utilized.

3.8  Extension to Multidimensional Problem
The multidimensional estimation problems encountered in Chapter 4 will bear

striking similarities to the one-dimensional problems discussed in this chapter.  In many
cases, the power spectrum estimate equations and methods are exactly analogous, except
for the extension to matrices, vectors, and multidimensional problem constraints.  The
vector notation actually streamlines the implementation of equations and aids in the analysis
of random processes as an indexed sequence of random variables.  Although the
multidimensional problem contains spatial and temporal variables, the one-dimensional
estimation methods covered in this chapter will always control frequency resolution
estimation from temporal domain measurements.  The multidimensional problem will
introduce several complications and extensions, but the added analytical power offsets the
added complexity, allowing a significant increase in information and improvement in
statistical properties of parameter estimates.

3.9  Summary
Fourier theory yields many tools for the analysis of experimentally measured signals.

Fourier series represent an ideal rarely found in nature, and therefore, the Fourier transform
is most commonly used for signal examination.  Several different forms of the Fourier
transform exist, and although the DFT is the most common form used in practice, the DTFT
yields considerable insight into underlying spectral operations.

Temporal domain power spectrum estimation relies on acceptable estimation of the
autocorrelation function.  The choice of sampling characteristics and weighting functions
significantly impacts the ability to resolve and identify spectral components.  The longest
sampled temporal lag controls resolution, and the sampling rate controls the bandwidth
available for energy content estimation.  The weighting function exchanges decreases in
sidelobe height, which controls energy leakage and the ability to identify relatively small
signals that may be masked by large sidelobes, for reductions in resolution.  The
periodogram is an early power spectrum estimation technique, and Bartlett’s method
decreases the variance of the power spectrum estimate by averaging periodograms.
Advanced spectrum estimation techniques are introduced in Chapter 4.


