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Abstract

The ellipticity of Rayleigh surface waves, which is an important parameter characterizing the propagation
medium, is studied for several models with increasing complexity. While the main focus lies on theory, practical
implications of the use of the horizontal to vertical component ratio (H/V-ratio) to study the subsurface structure
are considered as well. Love's approximation of the ellipticity for an incompressible layer over an
incompressible half-space is critically discussed especially concerning its applicability for different impedance
contrasts. The main result is an analytical exact formula of H/V for a 2-layer model of compressible media,
which is a generalization of Love's formula. It turns out that for a limited range of models Love's approximation
can be used also in the general case.

1. Introduction

Rayleigh waves propagating over the surface of homogeneous and inhomogeneous elastic
half-spaces are a well-known and prominent feature of wave theory. They are vector waves,
which are confined to the region near the surface, and are polarized in the saggital plane. That
means, the components of displacement are a horizontal component, which is parallel to the
direction of propagation, and a vertical component directed into the half-space. The
dimensionless ratio of these components H/V at the surface, the so-called ellipticity, is an
important parameter which reflects fundamental properties of the elastic material.

Indirectly, the study of Rayleigh wave ellipticities has recently gained considerable popularity
in the context of studying ambient seismic vibrations for seismic hazard analysis. Since
ambient vibrations as generated by wind, traffic, etc. consist predominantly of surface waves
(Correig and Urquizu [1]; Douze [2]; Ohmachi and Umezono [3]), H/V power spectral ratios
of ambient vibrations provide a statistical means to look at Rayleigh wave ellipticities. As a
consequence, H/V spectral ratios of ambient vibrations are increasingly used for the
investigation of local site amplification during strong earthquakes (Bard [4]; Kudo [5]). Due
to the strong impedance contrast in the shallow subsurface structure, local site effects are
often fairly well predicted by simple models (Ohrnberger et al. [6]; Scherbaum et al.[7]).
Therefore, a thorough theoretical understanding of even a single layer over halfspace is not
only of theoretical but also of considerable practical interest. Adding to this argument is the
fact that an accepted theoretical model for the interpretation of H/V measurements from
ambient vibrations, still has to be developped. Furthermore, the H/V-ratio has recently also
found practical applications in global seismology (Munirova and Yanovskaya [8]) and was
proposed to use in non-destructive testing with acoustic surface waves by Malischewsky et al.
[9].

It is well-known but still remarkable that for an homogeneous half-space H/V can be
expressed by a very simple formula. Adding only a single layer, immediately complicates the
situation considerably. To our knowledge, only very few studies deal with the attempt to
derive formulas for this case, among them the famous thesis of Love [10]. His derivation
deals with an incompressible layer over an incompressible half-space for which he presented
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an extremely simple approximation for H/V. The range of application of this formula,
however, remained unclear. In order to better understand the properties of H/V in a simple,
but still practically relevant situation, we have generalized Love's argument for compressible
media and present it in this paper in a modern notation. The result is an exact explicite
formula of H/V for the general case of one layer over a half-space. It turns out that Love's
approximation, originally derived for incompressible media, may be applied for compressible
media as well but is valid only in a limited range of cases. The paper is structured such that
the entity H/V is discussed for models of increasing complexity: homogeneous half-space,
impedance surface, layer over half-space.

2. The homogeneous half-space

Although the following calculations are straightforward and well documented in the textbook
literature (e. g. Ben-Menahem and Singh [11]), we felt it to be useful for the understanding of
the more complicated models to briefly present the general ideas to express H/V for this
situation as well. The 2D-Rayleigh wave motion is described in a cartesian coordinate system
with its origin located on the surface of the half-space. The x;- axis points into the direction
of propagation while the x3 - axis is directed into the half-space. Our starting point is the
Navier equation
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with the components of the displacement vector denoted by u,, A and p are Lamé's

parameters, and p is density. Einstein's summation condition is understood and the time
derivative is denoted by a dot. The depth-dependent Rayleigh eigenfunctions are
U, =U,(x;) (i=1, 3). The assumption of harmonic plane waves

u;=U; (x3) e 0= =1 3 )

with wave number £, angular frequency w, and time ¢ leads to the following coupled system
of differential equations of second order:

]/UIH(X:;) + lk(l-]/)Ué (X3) — PU] ()C3) =0 ,
Us(x3) + ik (1=y) Ui(x3) = yQ Us(x3)= 0 . 3)

The derivatives with respect to x5 are labeled by dashes. The imaginary unit is denoted by 1, y
is the squared ratio of shear-wave velocity S to longitudinal-wave velocity «,
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and P and Q are defined by

P=k> -k, , O=k*—kg" , (5)



where k, and kj are the wave numbers of longitudinal and transversal waves, respectively.
By introducing the square roots of P and Q,

p=4P, q=40, (6)

and the integration constants C;,C,,C5,C,, the general solution of (3) can be written as:

Ul (X3): Cl e_px3 + C2 epx3 + C3 e_qx3 + C4 eqx3 ,

(7)
U3(X3): 1 k£ Cl e_px3 — k£ C2 epx3 + E C3 e_qx3 — E C4 eqx3:| .
q

For the half-space C, = C4=0 must hold. The remaining constants C;and C; are usually
determined from the condition of a stress-free surface

S;=0, i=1,3 for x3=0, (8)

where S;3(x3) are the corresponding x;- dependent stress tensor components defined by

Si3(x3) = p B2IU; (x3) + ik U5 (x3)],

, )
S33(x3) = p &*[Uj (x3) +ik (1-29)U;(x3)] -

Setting the determinant of the homogeneous system (8) for C;and C; to zero results in
Rayleigh's equation with the phase velocity c=w/k and & = c/B:
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2pq
C3 = — Q+k2 Cl . (11)

The simple formula for H/V mentioned above is then (see e. g. Ben-Menahem and Singh

[11]):
1— 2/ 32
2 =|H/V|=[U,0)/U, )| =g/ p = 22;2/[’;. (12)
- /B

The ellipticity y depends only on Poisson's ratio v. In terms of the phase velocity c, it is
expressed here for the first time analytically by applying the formula of Malischewsky [12].
With the auxiliary functions 4y, h,, h3, hy, defined by
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h3 (V) + h4 (V) -2

The symbol sign(x) stands for the signum function. It is assumed that the cubic root is located
in the first and fourth quadrant, depending on the sign of the imaginary part in the argument
of the root. Fig. 1 shows the well-known behaviour of y in dependence on v for all possible
values of Poisson's ratio. It should be noted that, contrary to the models to be discussed in the
following, there is no dependence on frequency.
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Fig. 1: The ellipticity y for the homogeneous halfspace in dependence on Poisson's ratio v

3. Impedance surface

In a low frequency approximation, Tiersten [13] introduced special boundary conditions on
the surface in order to simulate the elastic behaviour of a thin layer over an half-space. Fig. 2
shows the assumed configuration. Note that in this case the origin of the coordinate system is
located on the boundary between layer and half-space.

The elastic parameters in the layer are indexed as 1 and unindexed for the half-space,
respectively. The thickness of the layer is d. For Rayleigh-wave motion the stress-free
conditions (8) are replaced by Tiersten's boundary conditions

Sl3+€1U1:O, S33+83U3:O fOTX3:0, (15)

with
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Fig. 2: Layer with thickness d over a halfspace

Recently Bovik [14] suceeded in improving these boundary conditions by introducing
derivatives of stress components on the right sides of (15). They are then correct in an
asymptotic sense up to the order O(d) (so-called O(d) — boundary conditions). A further
discussion of the implications of both kinds of special boundary conditions is beyond the
scope of this article. Here we calculate the ellipticity of Rayleigh waves under the conditions
(15). The general solution is the same as in (7). But in applying (15), we realize that
Rayleigh's equation (10) has to be replaced by the frequency-dependent equation (compare
with Malischewsky [15])
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and (11) becomes
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After some algebra, the ellipticity of Rayleigh waves for the impedance surface can be written
as

2 2 _
4= KpPIPk +q(pg =2P)] (19)

& (qP- pk*) + p ks’ P

Expression (19) for the ellipticity for model 1 (see Table 1) is presented in Fig. 3 as a function
of the dimensionless parameter a’//”tﬁ,l with the wavelength 4, of the shear waves in the

layer. Here, the ellipticity for the homogeneous halfspace with stress-free boundary



conditions is additionally included as a dashed line. It becomes obvious that the introduction
of the simple impedance-surface model already yields a strong frequency dependence of the
ellipticity. However, the peak appears at lower frequencies with respect to d / Ay than is often

observed for realistic sedimentary site models where the peak is close to d/ Ay =0.25 (e.g.

Scherbaum et al. [7]; see also discussion related to Fig. 5).
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Fig. 3: Ellipticity y of the impedance surface (full) and the halfspace (dashed) in dependence
ond/A
B

4. Layer over half-space

In the following we consider the most interesting case of a not necessarily thin layer over an
half-space. The geometry is as in Fig. 2 and we use label 1 for the parameters of the layer and
label 2 for the half-space, respectively. Love [10] investigated this problem under the
simplifying assumption that both media are incompressible. We do not reproduce Love's
original derivation in detail here, but in the course of its generalization for compressible
media we follow his argumentation by and large. Since Love's approach is not very well-
known, it is worth to make a few remarks about the incompressible case, though. In this case,
Lamé's parameter A and the velocity of longitudinal waves « are infinite. In formulating the
equation of motion it has to be taken into account that the product

where 6 is the vanishing volume strain, adopts a finite value /7, which is interpreted by Love
as a hydrostatic pressure. In addition, the stress component S35 has to be modified in the

same manner. The modified equation of motion can be solved by introducing scalar and
vector potentials and prescribing a convenient value for /Z On the other hand, the general
solution (7) and the period equation (10), respectively, are also valid for the incompressible
case when taking the limit @ — oo . The root of Rayleigh's equation for incompressible
media was presented analytically by Malischewsky [16]. We continue with the compressible
case by writing the solutions for the layer and the half-space in a modified way in order to be
more consistent with Love:



U, (x3) = i[- L, cosh (p, x3) + L, sinh(p; x3) — Ly cosh(q; x3) + Ly sinh (g, x3)],

p . k .
U3V (x3) = 71[— L, sinh (p, x3) + L, cosh (p; x3)] + q_[_ Lysinh (g, x3) + Ly cosh(q; x3) |,
1

Ul(z) (X3) = —I[Al e_p2x3 + A2 e_q2x3] ,

U3(2)(x3) = 4, Py open A4, * e hh (21
k q,

Here L, L,, Ly, L, are the integration constants for the layer and 4;, 4, for the half-space,
respectively. The relevant stress tensor components, belonging to these eigenfunctions, are
denoted by 813" (x3), S350 (x3); 813 (x3), 8337 (x3). In the following, because of the

cumbersome algebra we are omitting some of the intermediate results in detail and focus on
the essential steps and the final result. The stress-free conditions of the surface

$1i3" (~d) = S35V (=d) = 0 (22)
together with the continuity relations on the boundary between the layer and the half-space
0,20 =U,?0), U3(0) = U32(0), $157(0) = 5,520, 557(0) =557 0)  (23)

yield an homogeneous system of 6 equations for the 6 constants L;, L,, Lz, L4, Ay, A,. Its

determinant has to be zero to yield the period or secular equation for this model. This
equation determines the phase velocity ¢ of Rayleigh waves in terms of the frequency or the
wave length. There are several possibilities to write this complicated equation, which is a
generalization of (10) and (17), in a convenient manner. We used the formula of Ben-
Menahem and Singh [11], which is given here only symbolically as

Ac,0)=0. (24)

This equation depends on 8 parameters: 6 elastic parameters, layer's thickness and frequency.
It is nor surprising that it is impossible to discuss the roots of this equation in complete
generality. Instead we pick out some typical parameter combinations, which are important for
practical reasons. The same is true for the corresponding H/V-ratio which will be discussed
in the same manner.

Let us assume that (24) is solved already. The crucial trick of Love in order to get a
reasonable analytical expression for the ellipticity was to express the constants L; — L, by 4,

and 4, by applying the continuity relations (23)

Ly =Ly 4 +1 4y, Ly =1y 4 + 1y A4,

(25)
Ly=131A4) + 13 Ay, Ly =141 A + gy 45,

where the coefficients /;; — /4, are complicated functions of the 8 parameters mentioned

above. Furthermore, it is possible to introduce these equations into the stress-free conditions
(22) which yields the two equations

11 Al + C12 A2 = O, (3 Al + Cor A2 = 0, (26)



where the coefficients c¢;; — ¢,, are again complicated functions of the 8 parameters. In order

to obtain the ellipticity y it is necessary to form the expressions U 1(1) (—d) and U 3(1) (—d)

from (21). By using (25) these expressions are linear functions of the half-space constants 4;
and A, It turns out that they can be considerably simplified by introducing the relations (26).
After this step the ellipticity y is written as

P |U1(1)(—d)| _duA+dpd
‘Uf”(—d)‘ dy A+ dy Ay

(27)

with the new coefficients d;; — d,,. We are able to eliminate 4, by using e. g. the first
equation (26) and obtain

_ ‘12 dy — e dp

(28)
cipdy—crpdy
Finally, it is convenient to write this expression as a product of 3 factors f, 15, f3 :
x=hfa f3
c? 1 1+ y tanh(d p;) . (29)
fi=1- -

— e —— fs =
2, N y + tanh(d p)

The entity y is a very complicated function of the 8 parameters mentioned above and is
presented in the appendix. It should be noted that this final result can be obtained in a
reasonable manner only by using symbolic calculation as in MATHEMATICA. It is valid also
for all higher modes of Rayleigh waves, but in the following we will only discuss the
fundamental mode. Love's result for incompressible media was

2
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where y has a similar structure as our factor f3, but it is not identical. Love's argumentation
was that y is a slowly varying function very near to 1 so that the simple formula

6‘2

28

Xine ~1- 31

is a good approximation for ‘H / V|. However, it should be critically noted that by far not all
parameter combinations yield such a simple result as we will see later.

Next we will discuss the general case of compressible media. It can be easily realized from
(29) that for the limit @ — o f5 is unity and f|- f, adopts the half-space value y according

to (12) with the parameters of the layer. Because of the complexity of y, the value for the
other limit @ — 0 cannot be deduced analytically in a simple manner, but numerically it



approximately adopts the half-space value (12) with the parameters of the half-space. It
remains an open question here, wether the eigenfunctions of an half-space with a very thin
layer change exactly or only approximately into the half-space eigenfunctions in the limit
@ — 0. For intermediate w-values between 0 and infinity, the exact formula (29) has to be

used. It turns out, however, that for certain parameter regions the product f;- f5 is fairly

close to 1, so that in these - and only in these - special cases Love's formula (31) can be used
for compressible media as well. To demonstrate this we use two different models with high
{1} and low {2} shear wave contrasts, for which the parameters are given in Table 1.

parameters model 1 model 2
layer a, [km/sec] 1.5000 3.0000
B, [km/sec] 0.5000 1.0000
o1 [glem®] 2.0000 2.0000
v 0.4375 0.4375
d [km] 0.3000 0.3000
half-space a, [km/sec] 5.2000 5.2000
B> [km/sec] 3.0000 3.0000
0> [glem®] 2.7000 2.7000
v, 0.2506 0.2506

Tab. 1: Parameters for model 1 and model 2

In Fig. 4, the product f, - f3 is presented for both models as a function of d / Ay - We realize

that only for model 1 with the higher velocity contrast there is an intermediate region of
d / Ay - values (between 0.25 and 0.45), where f, - f3 approximates 1, while for both models

the product goes to 1 for d//iﬂ1 > 0.55.
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Fig. 4: The product f, - f, for model 1 (full) and model 2 (dashed), respectively, in
dependence on d/ 4,
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In Fig. 5, we present a comparison between the exact ellipticity after (29) and the
approximation (31) as a function of d / Ag -
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Fig. 5: Exact values of y for model 1 (left, full) and model 2 (right, full) and Love's
approximation for model 1 (left, dotted) and model 2 (right, dotted) in dependence
ond/A

B

For higher d/ Ap - values (> 0.5), the coincidence is very good for both models. However,

the range below the root of y, which is very important for practical applications, is much
better approximated by Love's formula for model 1 with the higher beta contrast than for
model 2. It may be that this is a general tendency. The singularity of H/V requires special
considerations. For practical applications is is often assumed that the corresponding frequency
is related to the so-called "shear-wave resonance" in the layer (see e. g. Mooney and Bolt
[17]; Nakamura[18]; Muciarelli[19] ) . That means it is assumed that the singularity occurs
for such frequencies, where the layer's thickness is one quarter of the wavelength of shear
waves within the layer, i. e. by using our nomenclature d/ﬂﬂl = 0.25. Until now, this

statement was never proven analytically. We realize from Fig. 5, that it is very well fulfilled
for model 1, but only approximately for model 2. Due to the enormous practical
consequences, it seems worthwhile to investigate the validity of this statement for different
shear-wave contrasts by using our exact formula (29). Fig. 6 shows d / Ay for the peak value

of H/V versus the beta contrast S, / 5, . Here, the parameters of the half-space are not changed

and Poisson's ratio of the layer is assumed to be constant as in Tab. 1.

It is remarkable that for beta contrasts greater than 3.5 the statement is very well fulfilled
which is in conformity with practical experience from site conditions with high impedance
contrast (Bard[20]). But it cannot be said, that the statement is generally true. Especially, the
occurence of a strange singularity for S,/ f,~ 2.6 requires an additional investigation,

which ,however, is beyond the scope of the present paper.

It is also interesting to study the influence of Poisson's ratio v; in the layer on the quality of
the approximation. The following Fig. 7 shows a 2D-density plot of the standard deviation ¢
in percent of Love's approximation for two models with higher and lower shear-wave
contrast, respectively, in dependence on v, and d/ Ag -
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Fig.7: Contour plot of the standard deviation ¢ in percent between exact y and Love's
approximation for model 1 (left) and model 2 (right) in dependence on v, and

d /A, . The white lines indicate v, = 0.4375 as used in both models.

Lower values of ¢ are indicated by red colors and higher values by blue ones. The v, used

for both models is indicated by a white line. The complicated fine structure of the error
function in these pictures demonstrates the complexity of the interrelation of H/V with its
approximation by Love. However, it becomes obvious, that there is a greater "red island" (for
0.35<v,;<0.45 and 0.25<d /4, <0.4) for model 1 with the higher beta contrast, where

Love's approximation works quite well. It can be seen, that we are at the border of this island
with our v, value. This red island is much smaller for model 2. In addition it comes at no
surprise, that in conformity with Fig. 5 we are always in the red range for sufficiently high

d//iﬂl.
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5. Conclusions

It is well known that the dependence of the ellipticity of Rayleigh waves on frequency is very
sensitive on the material properties of the propagation medium. Its study is important from a
theoretical as well as from a practical perspective. The exact analytic formula derived here is
an effective tool for doing this. Already the comparetively simple model of 1 layer over half-
space, which nevertheless is important for practical applications such as site effect studies,
yields a great variety of appearances. Not all of them are understood analytically yet. We find
that Love's simple approximation can be profitably used for compressible media if the shear-
wave contrast (i. €. the impedance contrast) between layer and half-space is high enough. For
a completely unknown model, however, the exact formula has to be used.

The coincidence between the shear-wave resonance frequency and the frequency of the peak
of the H/V- ratio, often used in practical applications, could be confirmed numerically for
models with high impedance contrast. However, its analytical relation still remains to be
proven with the exact formula being a natural starting-point.
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Appendix
The auxiliary entity y

By introducing the abbreviations

g = p,q, k> (mym, +2f,m m,),

g, =2k p g, (mym,—2myp,q,du),
g = k> (myms= 2 f, p, g, my")

g, =2k pyq, (mymy—2my p,q,5u),
gs = =2p,q k> (fim + p,q,m, ),
g6 =2k p gy (fymymy— mg )

with

OU =t~ , Op=p—p,,

and
_ 2 2
m, =2k ou+ o p,,
m, =2k’ Su— o’ p ,
m, =2k Su— o’ p, ,
my, = =4k Su+ 20 (p, - p, ﬂzz/ﬂlz) >
my =4k Su+ w* Spl B+ 2k 0’ [p, (B/B° + 1) —2p,]

the entity y is obtained in the form

g cosh(dq,) + g,sinh(d p,) + g;sinh(d g,)
g, cosh(d p,) + g5 cosh(d q,) + gssinh(d g,)




