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Abstract 
The ellipticity of Rayleigh surface waves, which is an important parameter characterizing the propagation 
medium, is studied for several models with increasing complexity. While the main focus lies on theory, practical 
implications of the use of the horizontal to vertical component ratio (H/V-ratio) to study the subsurface structure 
are considered as well. Love's approximation of the ellipticity for an incompressible layer over an 
incompressible half-space is critically discussed especially concerning its applicability for different impedance 
contrasts. The main result is an analytical exact formula of H/V for a 2-layer model of compressible media, 
which is a generalization of Love's formula. It turns out that for a limited range of models Love's approximation 
can be used also in the general case. 
 
 
1. Introduction 
Rayleigh waves propagating over the surface of homogeneous and inhomogeneous elastic 
half-spaces are a well-known and prominent feature of wave theory. They are vector waves, 
which are confined to the region near the surface, and are polarized in the saggital plane. That 
means, the components of displacement are a horizontal component, which is parallel to the 
direction of propagation, and a vertical component directed into the half-space. The 
dimensionless ratio of these components H/V at the surface, the so-called ellipticity, is an 
important parameter which reflects fundamental properties of the elastic material. 
Indirectly, the study of Rayleigh wave ellipticities has recently gained considerable popularity 
in the context of studying ambient seismic vibrations for seismic hazard analysis. Since 
ambient vibrations as generated by wind, traffic, etc. consist predominantly of surface waves 
(Correig and Urquizu [1]; Douze [2]; Ohmachi and Umezono [3]), H/V power spectral ratios 
of ambient vibrations provide a statistical means to look at Rayleigh wave ellipticities. As a 
consequence, H/V spectral ratios of ambient vibrations are increasingly used for the 
investigation of local site amplification during strong earthquakes (Bard [4]; Kudo [5]). Due 
to the strong impedance contrast in the shallow subsurface structure, local site effects are 
often fairly well predicted by simple models  (Ohrnberger et al. [6]; Scherbaum et al.[7]).  
Therefore, a thorough theoretical understanding of even a single layer over halfspace is not 
only of theoretical but also of considerable practical interest. Adding to this argument is the 
fact that an accepted theoretical model for the interpretation of H/V measurements from 
ambient vibrations, still has to be developped. Furthermore, the H/V-ratio has recently also 
found practical applications in global seismology (Munirova and Yanovskaya [8]) and was 
proposed to use in non-destructive testing with acoustic surface waves by Malischewsky et al. 
[9]. 
It is well-known but still remarkable that for an homogeneous half-space H/V can be 
expressed by a very simple formula. Adding only a single layer, immediately complicates the 
situation considerably. To our knowledge, only very few studies deal with the attempt to 
derive formulas for this case,  among them the famous thesis of Love [10].  His   derivation 
deals  with an incompressible layer over an incompressible half-space for which  he presented  
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an extremely simple approximation for H/V. The range of application of this formula, 
however, remained unclear. In order  to better understand the  properties of  H/V in a simple, 
but still practically relevant situation, we have generalized Love's argument for compressible 
media and present it in this paper in a modern notation. The result is an exact explicite 
formula of  H/V for the general case of one layer over a half-space. It turns out that Love's 
approximation, originally derived for incompressible media, may be applied for compressible 
media as well but  is valid only  in a limited range of cases. The paper is structured such that 
the entity H/V is discussed for models of increasing complexity: homogeneous half-space, 
impedance surface, layer over half-space. 
 
 
2. The homogeneous half-space 
Although the following calculations are straightforward and well documented in the textbook 
literature (e. g. Ben-Menahem and Singh [11]), we felt it to be useful for the understanding of 
the more complicated models to briefly present the general ideas to express H/V for this 
situation as well. The 2D-Rayleigh wave motion is described in a cartesian coordinate system  
with its origin located  on the surface of the half-space. The x1- axis points into the direction 
of propagation while  the x3 - axis is directed into the half-space. Our starting point is the 
Navier equation 
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with the components of the displacement vector denoted by iu , l and m are Lamé's 
parameters, and r  is density. Einstein's summation condition is understood and the time 
derivative is denoted by a dot. The depth-dependent Rayleigh eigenfunctions are 

)3,1()( 3 == ixUU ii . The assumption of harmonic plane waves 
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with wave number k, angular frequency ω, and time t leads to the following coupled system 
of differential equations of second order: 
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The derivatives with respect to 3x  are labeled by dashes. The imaginary unit is denoted by i, g  
is the squared ratio of shear-wave velocity b  to longitudinal-wave velocity a, 
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and P and Q are defined by 
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where  αk  and  βk  are the wave numbers of longitudinal and transversal waves, respectively. 
By introducing the square roots of P and Q, 
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and the integration constants 4321 ,,, CCCC , the general solution of (3) can be written as: 
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For the half-space 042 ≡= CC  must hold. The remaining constants 31 and CC  are usually 
determined from the condition of a stress-free surface 
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where )( 33 xSi are the corresponding 3x - dependent stress tensor components defined by 
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Setting the determinant of the homogeneous system (8) for 31 and CC  to zero results in  
Rayleigh's equation with the phase velocity kc /ω=  and x = c/b: 
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The simple formula for H/V mentioned above is then (see e. g. Ben-Menahem and Singh 
[11]): 
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The ellipticity c depends only on Poisson's ratio n. In terms of the phase velocity c, it is 
expressed here for the first time analytically by applying the formula of Malischewsky [12]. 
With the auxiliary functions ,,,, 4321 hhhh defined by 
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we obtain 
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The symbol sign(x) stands for the signum function.  It is assumed that the cubic root is located 
in the first and fourth quadrant, depending on the sign of the imaginary part in the argument 
of  the root. Fig. 1 shows the well-known behaviour of c in dependence on n  for all possible 
values of Poisson's ratio. It should be noted that, contrary to the models to be discussed in the 
following, there is no dependence on frequency.    
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Fig. 1: The ellipticity c for the homogeneous halfspace in dependence on Poisson's ratio n 
 
 
3. Impedance surface 
In a low frequency approximation, Tiersten [13] introduced special boundary conditions on 
the surface in order to simulate the elastic behaviour of a thin layer over an half-space. Fig. 2 
shows the assumed configuration. Note  that in this case  the origin of the coordinate system is 
located on the boundary between layer and half-space.  
The elastic parameters in the layer are indexed as 1 and unindexed for the half-space, 
respectively. The thickness of the layer is d. For Rayleigh-wave motion the stress-free 
conditions (8) are replaced by Tiersten's boundary conditions 
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Fig. 2: Layer with thickness d over a halfspace         
                                                                                                                                              
 
Recently Bövik [14] suceeded in improving these boundary conditions by introducing 
derivatives of stress components on the right sides of (15). They are then correct in an 
asymptotic sense up to the order O(d) (so-called O(d) – boundary conditions). A further  
discussion of  the implications of both kinds of special boundary conditions is beyond the 
scope of this article.  Here we calculate the ellipticity of Rayleigh waves under the conditions 
(15). The general solution is the same as in (7). But in applying (15), we realize that 
Rayleigh's equation (10) has to be replaced by the frequency-dependent equation (compare 
with Malischewsky [15]) 
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and  (11)  becomes  
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After some algebra, the ellipticity of Rayleigh waves for the impedance surface can be written 
as 
 

PkkpPq
Pqpqkpk
222

1

22

)(
])2([

ββρε
βρχ

+−

−+
=   .                                                                                  (19) 

 
Expression (19) for the ellipticity for model 1 (see Table 1) is presented in Fig. 3 as a function 
of  the dimensionless parameter 

1β
λd with the wavelength 

1β
λ of the shear waves in the 

layer. Here, the ellipticity for the homogeneous halfspace with stress-free boundary 
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conditions is additionally included as a dashed line. It becomes obvious that the introduction 
of the simple impedance-surface model already yields a strong frequency dependence of the 
ellipticity. However, the peak appears at lower frequencies with respect to 

1β
λd than is often 

observed for  realistic sedimentary site models where the peak is close to 
1β

λd =0.25 (e.g. 
Scherbaum et al. [7]; see also discussion related to Fig. 5). 
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Fig. 3: Ellipticity c of the impedance surface (full) and the halfspace (dashed) in dependence  
           on 

1
/ βλd  

 
                                             
4. Layer over half-space 
In the following we consider the most  interesting case of a not necessarily thin layer over an 
half-space. The geometry is as in Fig. 2 and we use label 1 for the parameters of the layer and 
label 2 for the half-space, respectively. Love [10] investigated this problem under the 
simplifying assumption that both media are incompressible. We do not reproduce Love's 
original derivation in detail here,  but in the course of   its generalization  for compressible 
media we follow his argumentation by and large. Since Love's approach is not very well-
known, it is worth to make a few remarks about the incompressible case, though. In this case, 
Lamé's parameter l and the velocity of longitudinal waves a are infinite. In formulating the 
equation of motion it has to be taken into account that the product 
 

,, Πλθλ == iiu                                                                                                                 (20) 
 
where q is the vanishing volume strain, adopts a finite value P, which is interpreted by Love 
as a hydrostatic pressure. In addition, the stress component 33S  has to be modified in the 
same manner. The modified equation of motion can be solved by introducing scalar and 
vector potentials and prescribing a convenient value for P. On the other hand, the general 
solution (7) and the period equation (10), respectively, are also valid for the incompressible 
case when taking the limit  a Ø ¶ . The root of  Rayleigh's equation for incompressible 
media was presented analytically by Malischewsky [16]. We continue with the compressible 
case by writing the solutions for  the layer and the half-space  in a modified way in order to be 
more consistent with Love: 
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Here 4321 ,,, LLLL  are the integration constants for the layer and 21, AA  for the half-space, 
respectively. The relevant stress tensor components, belonging to these eigenfunctions, are 
denoted by .)(),();(),( 3
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cumbersome algebra we are omitting some of the intermediate results in detail and focus on 
the essential steps and the final result. The stress-free conditions of the surface 
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together with the continuity relations on the boundary between the layer and the half-space 
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yield an homogeneous system of 6 equations for the 6 constants 4321 ,,, LLLL , 21, AA . Its 
determinant has to be zero to  yield the period or secular equation for this model. This 
equation determines the phase velocity c of Rayleigh waves in terms of the frequency or the 
wave length. There are several possibilities to write this complicated equation, which is a 
generalization of (10) and (17), in a convenient manner. We used the formula of Ben-
Menahem and Singh [11], which is given here only symbolically as 
 

.0),( =ω∆ c                                                                                                                           (24) 
 
This equation depends on 8 parameters: 6 elastic parameters, layer's thickness and frequency. 
It is nor surprising  that it is impossible to discuss the roots of this equation in complete 
generality. Instead we  pick out some typical parameter combinations, which are important for 
practical reasons. The same is true for the corresponding  H/V-ratio which will be discussed  
in the same manner.  
Let us assume that (24) is solved already. The crucial trick of Love in order to get a 
reasonable analytical expression for the ellipticity was to express the constants 41 LL −  by A1 
and A2 by applying the continuity relations (23) 
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where the coefficients 4211 ll −  are complicated functions of the 8 parameters mentioned 
above. Furthermore, it is possible to introduce these equations into the stress-free conditions 
(22) which yields the two equations 
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where the coefficients 2211 cc −  are again complicated functions of the 8 parameters. In order 

to obtain the ellipticity c it is necessary to form the expressions )(and)( )1(
3

)1(
1 dUdU −−  

from (21). By using (25) these expressions are linear functions of the half-space constants A1 
and A2. It turns out that they can be considerably simplified  by introducing the relations (26). 
After this step the ellipticity c is written as 
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with the new coefficients 2211 dd − . We are able to eliminate A2 by using e. g. the first 
equation (26) and obtain 
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Finally, it is convenient to write this expression as a product of 3 factors 321 ,, fff  : 
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The entity y is a very complicated function of the 8 parameters mentioned above and is 
presented in the appendix. It should be noted that this final result can be obtained in a 
reasonable manner only by using symbolic calculation as in MATHEMATICA. It is valid also 
for all higher modes of Rayleigh waves, but in the following we will only discuss the 
fundamental mode. Love's result for incompressible media was 
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where y~  has a similar structure as our factor f3, but it is not identical. Love's argumentation 
was that y~  is a slowly varying function very near to 1 so that the simple formula 
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is a good approximation for VH . However, it should be critically noted that by far not all 
parameter combinations yield such a simple result as we will see later.  
Next we will discuss  the general case of compressible media. It can be easily realized from 
(29) that for the limit 3f∞→ω  is unity and 21 ff ⋅  adopts the half-space value c according 
to (12) with the parameters of the layer. Because of the complexity of y, the value for the 
other limit 0→ω  cannot be deduced analytically in a simple manner, but numerically it 
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approximately  adopts the half-space value (12) with the parameters of the half-space. It 
remains an open question here, wether the eigenfunctions of an half-space with a very thin 
layer change exactly or only approximately into the half-space eigenfunctions in the limit  

0→ω . For intermediate w-values between 0 and infinity, the exact formula (29) has to be 
used. It turns out, however, that for certain parameter regions the product 32 ff ⋅  is fairly 
close to 1, so that in these - and only in these - special cases Love's formula (31) can be used 
for compressible media as well. To demonstrate this we use two different models with high 
{1} and low {2} shear wave contrasts, for which the  parameters are given in Table 1.     
                                                                                                                                            

                              

parameters model 1 model 2

layer a1  [km/sec] 1.5000 3.0000
b1   [km/sec] 0.5000 1.0000
r1   [g/cm3]         2.0000 2.0000
n1   0.4375 0.4375
d   [km] 0.3000 0.3000

half-space a2   [km/sec] 5.2000 5.2000
b2   [km/sec] 3.0000 3.0000
r2   [g/cm3] 2.7000 2.7000
n2 0.2506 0.2506  

 
Tab. 1: Parameters for model 1 and model 2 
 
 In Fig. 4, the product 32 ff ⋅  is presented for both models as a function of 

1β
λd . We realize 

that only for model 1 with the higher velocity contrast there is an intermediate region of 
1β

λd - values (between 0.25 and 0.45), where 32 ff ⋅  approximates 1, while for both models 
the product  goes to 1 for 

1β
λd > 0.55. 
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Fig. 4: The product 32 ff ⋅  for model 1 (full) and model 2 (dashed), respectively, in    
            dependence on 
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In  Fig. 5 , we present a comparison between the exact ellipticity after (29) and the 
approximation (31) as a function of 

1β
λd .  
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Fig. 5: Exact values of  c for model 1 (left, full) and model 2 (right, full) and Love's      
           approximation for model 1 (left, dotted) and model 2 (right, dotted) in dependence 
           on 

1
/ βλd  

 
                                                                                                                                 
For higher 

1β
λd - values ( > 0.5), the coincidence is very good for both models. However, 

the range below the root of c, which is very important for practical applications, is much 
better approximated by Love's formula for model 1 with the higher beta contrast than for 
model 2. It may be that this is a general tendency. The singularity of H/V requires special 
considerations. For practical applications is is often assumed that the corresponding frequency 
is related to the so-called "shear-wave resonance" in the layer (see e. g. Mooney and Bolt 
[17]; Nakamura[18]; Muciarelli[19] ) . That means it is assumed that the singularity occurs 
for such frequencies, where the layer's thickness is one quarter of the wavelength of shear 
waves within the layer, i. e. by using our nomenclature 

1β
λd = 0.25. Until now, this 

statement was never proven analytically.  We realize from Fig. 5, that it is very well fulfilled 
for model 1, but only approximately for model 2. Due to the enormous practical 
consequences, it seems worthwhile to investigate the validity of this statement for different 
shear-wave contrasts by using our exact formula (29). Fig. 6 shows 

1β
λd  for the peak value 

of H/V versus the beta contrast 12 / ββ . Here, the parameters of the half-space are not changed 
and Poisson's ratio of the layer is assumed to be constant as in Tab. 1. 
It is remarkable that for beta contrasts greater than 3.5 the statement is very well fulfilled 
which is in conformity with practical experience from site conditions with high impedance 
contrast (Bard[20]).  But it cannot be said, that the statement is generally true. Especially, the 
occurence of a strange singularity for 12 / ββ º 2.6  requires an additional  investigation, 
which ,however, is beyond the scope of the present paper. 
It is also interesting to study the influence of Poisson's ratio n1 in the layer on the quality of 
the approximation. The following Fig. 7 shows a 2D-density plot of the standard deviation d 
in percent of Love's approximation for two models with higher and lower shear-wave 
contrast, respectively, in dependence on n1 and 

1β
λd .             
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Fig. 6: 

1
/ βλd  for the peak value of H/V  in dependence of  12 / ββ  
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Fig.7: Contour plot of the standard deviation d in percent between exact c and Love's     
           approximation for model 1 (left) and model 2 (right) in dependence on 1ν  and 
           

1
/ βλd . The white lines indicate 1ν = 0.4375 as used in both models. 

 
                                                                                                                                                       
 Lower values of d are indicated by red colors and higher values by blue ones. The 1ν  used 
for both models is indicated by a white line. The complicated fine structure of the error 
function in these pictures demonstrates the complexity of the interrelation of H/V with its 
approximation by Love. However, it becomes obvious, that there is a greater "red island" (for 

45.035.0 1 <<ν  and 4.0/25.0
1
<< βλd ) for model 1 with the higher beta contrast, where 

Love's approximation works quite well. It can be seen, that we are at the border of this island 
with our 1ν value. This red island is much smaller for model 2.  In addition it comes at no 
surprise, that in conformity with Fig. 5 we are always in the red range for sufficiently high 

1β
λd .                   
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5. Conclusions 
It is well known that the dependence of the ellipticity of Rayleigh waves on frequency is very 
sensitive on the material properties of the propagation medium. Its study is important  from a 
theoretical as well as from a practical perspective. The exact analytic formula derived here is 
an effective tool for doing this. Already the comparetively simple model of 1 layer over half-
space, which nevertheless  is important for practical applications such as site effect studies, 
yields a great variety of appearances. Not all of them are understood analytically yet. We find 
that Love's simple approximation can be profitably used for compressible media if the shear-
wave contrast (i. e. the impedance contrast) between layer and half-space is high enough. For 
a completely unknown model, however,  the exact formula has to be used.  
The coincidence between the shear-wave resonance  frequency and the frequency of the peak 
of the H/V- ratio, often used in practical applications, could be confirmed numerically for 
models with high impedance contrast. However, its analytical relation still remains to be 
proven  with  the exact formula being a natural starting-point. 
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Appendix 
 
The auxiliary entity y 
 
By introducing the abbreviations 
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the entity  y  is obtained in the form 
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