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Direct Inversion of Spatial Autocorrelation Curves

with the Neighborhood Algorithm

by Marc Wathelet, Denis Jongmans, and Matthias Ohrnberger

Abstract Ambient vibration techniques are promising methods for assessing the
subsurface structure, in particular the shear-wave velocity profile (Vs). They are based
on the dispersion property of surface waves in layered media. Therefore, the pene-
tration depth is intrinsically linked to the energy content of the sources. For ambient
vibrations, the spectral content extends in general to lower frequency when compared
to classical artificial sources. Among available methods for processing recorded sig-
nals, we focus here on the spatial autocorrelation method. For stationary wavefields,
the spatial autocorrelation is mathematically related to the frequency-dependent wave
velocity c(x). This allows the determination of the dispersion curve of traveling
surface waves, which, in turn, is linked to the Vs profile. Here, we propose a direct
inversion scheme for the observed autocorrelation curves to retrieve, in a single step,
the Vs profile. The powerful neighborhood algorithm is used to efficiently search for
all solutions in an n-dimensional parameter space. This approach has the advantage
of taking into account the existing uncertainty over the measured curves, thus gen-
erating all Vs profiles that fit the data within their experimental errors. A preprocess-
ing tool is also developed to estimate the validity of the autocorrelation curves and
to reject parts of them if necessary before starting the inversion itself.

We present two synthetic cases to test the potential of the method: one with ideal
autocorrelation curves and another with autocorrelation curves computed from sim-
ulated ambient vibrations. The latter case is more realistic and makes it possible to
figure out the problems that may be encountered in real experiments. The Vs profiles
are correctly retrieved up to the depth of the first major velocity contrast unless low-
velocity zones are accepted. We demonstrate that accepting low-velocity zones in
the parameterization has a dramatic influence on the result of the inversion, with a
considerable increase in the nonuniqueness of the problem. Finally, a real data set is
processed with the same method.

Introduction

In earthquake engineering, the shear-wave velocity (Vs)
of the subsurface structure is considered a key parameter for
its major influence on local ground-motion amplification,
which in turn is responsible for a great part of the damage
in populated areas (e.g., Bard, 1994). For economical and
practical reasons, nondestructive methods are increasingly
preferred to measure the variations of Vs across a soil struc-
ture. The use of surface waves triggered by an artificial
source, the spectral analysis of surface waves (SASW) (Sto-
koe et al., 1989) or the multichannel analysis of surface
waves (MASW) method (Foti et al., 2003; Socco and Strob-
bia, 2004), has become a standard for the determination of
Vs in the layers close to the surface. In vertically heteroge-
neous media, surface waves are dispersive: their velocity
varies with frequency, which in turn controls the penetration

depth (Aki and Richards, 2002). This dispersion property
can be used to derive Vs versus depth through an inversion
process (Herrmann, 1994; Wathelet et al., 2004). Though
attractive in many aspects, owing to the limited frequency
range of the signals (Jongmans and Demanet, 1993; Toki-
matsu, 1995), the surface-wave methods using artificial
sources generally offer a restricted investigation depth (a few
tens of meters usually). In contrast, the frequency content of
the microtremor record is distributed over a wider range.
As a consequence, the measurement of ambient vibrations
through an array of sensors has appeared as a promising
option to complement active sources (Asten and Henstridge,
1984; Tokimatsu, 1995; Bettig et al., 2001; Satoh et al.,
2001; Nguyen et al., 2004; Wathelet et al., 2004). The main
hypothesis for using ambient vibrations is that they are dom-
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inantly composed of surface waves, which allows the dis-
persion property to be used (Tokimatsu, 1995; Chouet et al.,
1998).

Currently, two main families of methods are considered
for extracting the dispersion curve (DC) from recorded sig-
nals: the frequency–wavenumber (f-k, Capon, 1969; Lacoss
et al., 1969; Asten and Henstridge, 1984; Horike, 1985) and
the spatial autocorrelation approaches (SPAC, Aki, 1957;
Roberts and Asten, 2004). The first class of methods as-
sumes that a single dominant plane wave is propagating
through the station array. A simple processing (phase shifts
and summations) allows the retrieval of the apparent wave
velocity and azimuth. In the case of waves traveling simul-
taneously in various directions (usual situation for ambient
vibrations), the assumption of uncorrelated signals may not
be satisfied, leading to incorrect velocity estimates (Gold-
stein and Archuleta, 1987). With a limited number of sen-
sors, stacking during a certain period of time (a few tens of
minutes) is usually required to obtain correct velocity values.

On the other hand, spatial autocorrelation techniques
take advantage of the relatively homogeneous distribution
of sources in the noise wave field to link autocorrelation
ratios to phase velocities. In the case of a single-valued phase
velocity per frequency band, Aki (1957) demonstrated that
these ratios have the shape of Bessel functions of order 0
whose argument is dependent upon the DC values and the
array aperture. Bettig et al. (2001) brought some slight mod-
ifications to the original formula to extend the method for
irregularly shaped arrays. Classically, obtaining the Vs pro-
file at one site is a two-stage process: derivation of the DC
from the SPAC curves with a least-squares scheme (Bettig
et al., 2001) and inversion of the DC to determine the Vs

profile. Recently, Asten et al. (2004) proposed to merge the
two stages into a single inversion based on least-squares op-
timization (Herrmann, 1994), allowing the determination of
Vs(z) directly from the autocorrelation curves. The approach
proposed here is conceptually the same, except that we make
use of a direct search inversion technique: the neighborhood
algorithm (NA, Sambridge, 1999). Other similar algorithms
have been commonly used in geophysics, such as genetic
algorithms (GA, Lomax and Snieder, 1994) or simulated an-
nealing (Sen and Stoffa, 1991). The advantage of such meth-
ods lies in the global exploration of the parameter space.
Because of the nonuniqueness of this kind of inversion prob-
lem, the parameter space exploration is mandatory to assess
the reliability of the final velocity profile. It allows the ex-
ploration of nearly all equivalent minima in terms of the
misfit function, and thus additionally enables an improved
uncertainty analysis when compared to classical linearized
inversion schemes (least-squares). Shapiro (1996) showed
that the solutions obtained from classical surface-wave in-
version schemes are too restrictive and uncertainties are not
correctly estimated. The SPAC inversion algorithm used here
is similar to a NA-based DC inversion tool recently proposed
(Wathelet et al., 2004). In this article, the developed algo-
rithm is tested on theoretical SPAC curves, on a synthetic

noise wave field generated by numerical modeling, and on
a real case (Brussels, Belgium).

Autocorrelation Method

The spatial autocorrelation method was first proposed
by Aki (1957) for horizontally propagating waves. Assum-
ing a unique phase velocity per frequency and the station-
arity of the noise wave field both in time and space, he dem-
onstrated that the correlation of the signals recorded at two
stations separated by distance r can be written

xr
q(r,x) � J (1)0� �c(x)

where, is the azimuthal average of the correlation ratioq̄
q(r,x) � �(r,x)/�(0,x), c(x) is the phase velocity at an-
gular frequency x, and Jn is the Bessel function of order n.

T1
�(r,x) � v (t)v (t)dt (2)0 r�T 0

where v0(t) and vr(t) are the recorded signals at two stations
separated by distance r.

Equation (1) is valid for the vertical component. Cor-
responding and more complex formulas exist for the hori-
zontal components of the surface waves.

An example of a typical station layout is given in Fig-
ure 1a for an array with an aperture of about 100 m. The
irregular shape is generally induced by natural obstacles or
artificial structures (trees, streets, buildings). The end points
of the vectors joining all pairs of stations are plotted in Fig-
ure 1b. For such an imperfect array, it is not possible to
calculate an azimuthal average for one single distance. The
solution proposed by Bettig et al. (2001) is to group pairs
of stations along rings of finite thicknesses, as the pairs of
gray circles drawn in Figure 1b. Equation (1) can be modi-
fied to allow the calculation of average ratios over a ring
between r1 and r2.

2 c(x) xr xr2 1
q (x) � r J � r J (3)r r 2 1 1 1, 2 2 � � � � ��1 2 r � r x c(x) c(x)2 1

Equation (3) has the same general shape as equation (1)
and is strictly equal if r1 tends to r2. In the following, we
will refer to equation (1) for the sake of simplicity.

SPAC Direct Inversion

The goal of the inversion is to infer the parameters of
the soil structure (mainly Vs values, Vp values to a lesser
extent) from the measured SPAC ratios . Assumingq (x)r r,1 2

an ambient vibration wave field made in the majority of the
surface waves, the SPAC curves are linked with the DC
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Figure 1. (a) Map of sensor locations for the array
configuration used in this study. (b) Azimuth–inter-
distance plot: each dot represent one pair of stations.
The pairs of gray circles show the limits of the chosen
rings for SPAC computation.

through equation (1). The DC is defined in the case of ver-
tically heterogeneous 1D models, and its inversion is a clas-
sic problem (Herrmann, 1994). Recently, Wathelet et al.
(2004) proposed to use the NA developed by Sambridge
(1999) in order to investigate the parameter space in a more
appropriate way. Velocity models are randomly generated
by the NA core program, the corresponding phase velocities
c(x) of the dispersion curves are calculated for each fre-
quency, and the theoretical SPAC curves are obtained
through equation (1) or (3). The theoretical curves are then
compared to the SPAC data curves, and the fitting is char-
acterized by a misfit value for each model. The convergence
is ensured by only sampling the most promising parts of the
parameter space, where the models have the lowest misfit.
The random process is initiated by an arbitrary number (ran-
dom seed). Two inversions with differing seeds will lead to
distinct samples of the parameter space. Several independent
runs (three to five) are required to test the robustness of the
final results.

The misfit is evaluated over all data samples. It takes
into account the standard deviation derived for each SPAC
sample, and it is defined in the same way as for the DC
inversion (Wathelet et al., 2004):

n nR Fi 21 (q � q )dij cijmisfit � (4)� � 2nR ri�1 j�1n� ij� Fkk�1

where qdij is the SPAC ratio of data curves at frequency fj
and for ring i, which is defined by all interstation distances
between ri1 and ri2, qcij is the SPAC ratio of calculated curves
at frequency fj and for ring i, rij is the observed variance for
the sample at frequency fj and for ring i, nR is the number
of rings considered, and nFi is the number of frequency sam-
ples for ring i.

The SPAC inversion has basically the same limits as the
DC inversion as SPAC curves are calculated from DC curves:
nonuniqueness, loss of resolution with depth, and equiva-
lence for profiles with low-velocity zones. As we plan to
invert SPAC curves to obtain Vs profiles, we first address the
question of the relationship between SPAC and dispersion
curves. Obviously, equation (1) does not ensure a one-to-
one relation between the two types of curves, as the argu-
ments for J0(x) that satisfy equation (1) can be numerous for
small values of . However, equation (1) does not im-q(r,x)
ply any coupling of c(x) with the SPAC at other frequencies
than x, meaning that the inversion can be made indepen-
dently, frequency by frequency. Consequently, transforming
SPAC curves at frequency x into their equivalent common
DC is just a matter of solving a system of equations of the
same form as (1) (one equation for each considered ring)
and whose solutions c(x) are discrete numbers. If all the
SPAC curves for the different rings are consistent with each
other, there is a minimum of one solution that satisfies all
apertures. From the discrete nature of the solutions and the

number of rings likely to be considered, there is little chance
of having two distinct solutions for c(x) that perfectly match
all equations.

The method is illustrated on two numerical examples: a
pure synthetic test for which theoretical SPAC curves are
computed and inverted, and a numerical simulation of noise
seismograms for a known geometry. In both cases, uncer-
tainties of the SPAC curves are considered. For the pure syn-
thetic case, we derive uncertainties of the SPAC curves from
Monte Carlo simulation of normally distributed deviations
from the true velocity models. For the simulated ambient
vibration data set, the uncertainties stem from the averaging
procedure applied within the signal-processing step. In a real
case, heterogeneities may add supplementary uncertainties
and eventually some bias. In the following, the dispersion
curves corresponding to the Vs models are computed. How-
ever, the inversion is made only on the SPAC curves.

Pure Synthetic Test

The inversion method is first applied on a perfect syn-
thetic model defined by a sedimentary layer overlying a
rocky basement. Vs and Vp values inside the two layers are
plotted in Figures 2a and 2b (black lines). We assume a 100-
m-aperture array with a quasicircular shape whose charac-
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Figure 2. Reference model for pure and noise synthetics. (a) Vp profiles: input
average model (plain line), input standard deviations (dotted lines), and generated ran-
dom models ranked by their autocorrelation misfit (common gray scale). (b) Vs profiles:
same legend as for Vp. (c) Dispersion curves of random models for the fundamental
Rayleigh mode. (d) to (h) Autocorrelation ratios for chosen rings plotted against fre-
quency, average, and standard deviation for all samples (dots).

teristics are given in Figure 1a. From the azimuth–distance
plot of Figure 1b, we selected five distinct rings including 7
to 12 station pairs each, with an average of 10. The limits
of rings were chosen to be equal to the noise synthetic case
(see next example) for comparison purposes. Parametric
tests show that the final results depend very little on the ring
selection. We introduce uncertainties into the original model
by assuming a normal distribution around the average model
(black lines, Figs. 2a and 2b, with the standard deviation
shown by dotted lines in the same figure). Theoretical SPAC
ratios were computed for 5000 randomly generated models,
keeping Poisson’s ratio constant. SPAC curves for the five
rings are regularly distributed around the ones computed for
the average model (black dots of figures 2d to 2h).

For the inversion, a two-layer model is considered with
the parameter ranges specified in Table 1. In the shallow

layer, the velocity can increase with a power-law relation,
and the parameters are four (Vp, Vs/Vp, the thickness, and
the Vp increase between the top and the bottom). The
constant-velocity layer corresponding to the true model is a
particular realization of the parametrization. The bedrock
parameters are two (Vp increase and Vs/Vp). NA has been
started using three independent runs with distinct random
seeds, generating a total of 30,000 models. Among them
about 13,500 have a misfit of less than 1 and are plotted in
Figure 3. The lowest misfit is 0.03.

The Vs and Vp models resulting from the SPAC inversion
are plotted in Figures 3a and 3b with their misfit value. On
the same figures are drawn the theoretical model of Figure 2.
Most of the solutions with a misfit lower than 0.4 are able
to explain in a consistent way the SPAC data given their
standard deviations (Figs. 3a and 3b). In Figure 3c are plot-
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Table 1
Parameters for One Sediment Layer with a Power Law Variation of Vs,

Overlying an Infinite Half-Space

Layer Thickness Vp Vs/Vp Density Vp Variation

Sediments 10 to 50 m 200 to 2000 m/sec 0.01 to 0.707 2 t/m3 10 to 1000 m/s
Half-space — �10 to 3000 m/sec 0.01 to 0.707 2 t/m3 —

Vp, compressional velocity; Vs, shear velocity; �, incremental velocity (the parameter is the velocity gap
between the first and second layers). The power law gradient across the first layer is represented by a stack of
five sub layers. The value of the parameter is the total velocity variation across the layer.

Figure 3. Inversion of the pure synthetic SPAC curves. (a) Vp profiles: true average
model (black line), true standard deviations (dotted lines), and inverted models ranked
by their autocorrelation misfit (common gray scale). (b) Vs profiles: same legend as for
Vp. (c) Dispersion curves of generated models. (d) to (h) Autocorrelation ratios for
chosen rings plotted against frequency, average, and standard deviation of data points
to be fitted (dots).

ted the corresponding DCs. The Vs profile (Fig. 3b) is very
well constrained from 6 to 20 meters deep. The very super-
ficial layers (less than 6 m) are at a depth lower than one-
third of the minimum wavelength (20 m), and Vs values are
less constrained, resulting from the limited bandwidth at

high frequency. Below 35 m, Vs values are well constrained
owing to the wide low-frequency range of the SPAC curves.
In real data, this well-constrained velocity in the bedrock is
usually missing because of the site high-pass filter of the
Rayleigh waves below the fundamental frequency (Scher-
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Figure 4. Simulation of ambient vibration signals.
(a) Time series of vertical component for the central
station of array shown in Figure 1a. (b) The smoothed
Fourier spectrum for the vertical component and (c)
one horizontal component.

baum et al., 2003). The DCs computed for the best-fitting
models compare very well with the theoretical one (Figs. 2c
and 3c). The resolution is poor between 22 m and 35 m: a
velocity jump at 22 m gives a misfit value equivalent to the
one for a contrast at 35 m. Other inversion tests (not pre-
sented here) have shown that this lack of resolution results
from the uncertainties considered on the SPAC data. How-
ever, the lowest misfit model correctly finds an interface at
around 25 m depth.

Usually, Vp has a low influence on the dispersion curve,
and hence on the SPAC curves. Boore and Toksöz (1969)
proved for a five-layer model that the influence of Vp on the
DC is about one-tenth the influence of Vs. However, for low
Poisson’s ratios, Vp has more influence. In this latter situa-
tion, the final Vs profile depends upon the correctness of the
Vp profile. In classical iterative inversions (least-squares
scheme), Vs/Vp, or Poisson’s ratio, is kept constant because
the small influence of Vp on the SPAC curves generally leads
to unrealistic velocities. For the NA inversions, the parame-
terization is easily adjusted to fit the physical limits of Vp

and the prior information, for instance, about the superficial
values of Vp. When no information is available about Vp, it
is still used as a parameter with large prior intervals to pre-
vent the alteration of the final result with unreliable assump-
tions. For this inversion test, we assumed that no prior in-
formation exists on Vp. As the Poisson’s ratio for the
theoretical model is 0.49, the compressional-wave velocity
(Vp) profile is badly recovered. Equivalent models are found
for the whole prior Vp range (from 200 to 2000 m/sec in the
upper layer).

To test the efficiency of the SPAC inversion process, we
applied the method to noise synthetics, generated with ran-
dom sources generated on a 1D layered model and measured
by an array of sensors.

Noise Synthetic Test

The synthetic seismic ambient vibrations were calcu-
lated for about 60 sec using the method proposed by Hisada
(1995) for the 1D average layered model described in the
previous section (Figs. 2a and 2b). This method has already
been successfully used for modeling noise by Bonnefoy-
Claudet et al. (2004). A total of 333 sources points were
randomly distributed both in time and space, a few meters
to 600 m from the first receiver. Sources were punctual
forces with delta-like functions of random amplitudes and
directions, with an energy content uniformly spread from 0.5
to 8.5 Hz. The time series and the spectrum simulated at one
of the receivers are plotted in Figures 4a and 4b for the
vertical component. In Figure 4c, the spectrum for the north
horizontal component is shown. A striking feature is the nar-
rower range at low frequency on the vertical component,
resulting from the high-pass filtering effect affecting the
Rayleigh waves.

The selected array geometry is the one of Figure 1a, and
the SPAC curves are computed using the method proposed

by Bettig et al. (2001), with the rings shown in Figure 1b.
To assess the stationarity in time of the autocorrelation ra-
tios, we divide the 60 sec of available signals into smaller
time windows. The choice of window length is crucial. In
Figure 5, the SPAC curves calculated for the smaller ring (29
to 41 m) are plotted for various window lengths, counted in
number of periods of the central considered frequency: 10,
25, and 50 (from light to dark gray, respectively). For the
three curves, the average values are close to the true SPAC
curve (thick black line) in the range 3.5 to 5.5 Hz. Below
3.5 Hz, the 10-period SPAC curve deviates from the correct
function, while the two other curves (25 and 50 periods) are
close to it for frequencies as low as 2.5 Hz. This discrepancy
for short windows is probably due to a lack of source azi-
muth coverage (Asten et al., 2004), as the number of acting
random sources is inversely proportional to the considered
period of time. Another explanation might be that the spec-
tral estimates are more influenced by unavoidable side ef-
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Figure 5. Comparison of SPAC results for differ-
ent time-window lengths, average and standard de-
viations (ring 29 to 41 m): 10 periods (light gray), 25
periods (medium gray), and 50 periods (dark gray).
The thick black line represents the theoretical SPAC
curve.

Figure 6. Theoretical f-k response for array ge-
ometry of Figure 1a. Inner black circle is shown at
0.025 rad/m and the outer black circle at 0.15 rad/m.

fects generated by cutting signals into time windows. Also,
long time-window curves are smoother than short ones and
exhibit smaller standard deviations (Fig. 5). In the following
discussion, the 25-period time windows are used for the
SPAC curve computations.

The average SPAC curves are displayed with their stan-
dard deviations in Figure 8 with gray dots and error bars,
respectively. As mentioned in the Introduction, the measured
SPAC curves do not always fit the shape of Bessel’s function,
and the system of SPAC equations (of type 1 or 3) may have
no common solution for all apertures. Feeding the inversion
process with contradictory SPAC curves is likely to give an
uncontrolled average solution. If the contradiction comes
from a defect in the array response (e.g., too wide aperture
for the considered wavelength) or in the noise content (e.g.,
uncorrelated noise due to a long distance between sensors
for the considered frequency, or insufficient energy level at
low frequency), the probability of obtaining an unrealistic
solution is high. A selection of the relevant parts of the SPAC
curves is thus necessary. The problem is complex, and there
are no objective or commonly applicable rules. Without a
prior knowledge of the soil structure, the only reliable fea-
tures are the array geometry and the SPAC curves them-
selves. From the array geometry, some rough limits can be
deduced for a correct response in terms of wavenumber (As-
ten and Henstridge, 1984), theoretically for the f-k process-
ing only. The theoretical response of the array displayed in
Figure 1a has been calculated and shows at least two major
aliasing peaks at wavenumber 0.15 rad/m (Fig. 6, outer black
circle). A rough estimate of the minimum wavenumber can
be deduced from the width of the central peak of Figure 6,
about 0.025 rad/m (inner black circle). On the other hand,
from the SPAC curves for the different rings we can test the

consistency of the system of equations, and discard the sam-
ples that are obviously out of the general trend. Practically,
from a very large a priori value in terms of apparent velocity
(e.g. from 100 to 3000 m/sec), all possible solutions c(x) of
equation (1) or (3) are calculated independently for each
ring. For doing so, we define the function:

g(c,x) � q (r,x,c) � q (r,x) (5)calc obs

where x is the considered frequency band, qcalc is calculated
by equation (1) or (3), and qobs is the autocorrelation ratio
calculated from the simulated signals. The roots of function
g(c,x) are successively bracketed by a coarse grid search
starting from the lowest velocity, and then refined by an
iterative scheme based on the Lagrange polynomial con-
structed by Neville’s method (Press et al., 1992). In a second
stage, we construct a grid for each ring in the frequency–
slowness domain. The grid cells are filled with 1 if at least
one solution exists within the cell, and with 0 in the contrary
case. All the grids are stacked, and the values in each cell
give the number of consistent rings for a particular fre-
quency–slowness pair. If the SPAC curves are consistent, the
cells where the density of solutions is maximum should de-
lineate the corresponding DC. From this plot, we determine
the minimum and maximum slowness for each frequency,
as well as the minimum and the maximum wavenumber for
which we observe a focused DC. To reduce the subjectivity
of the selection, zones where no clear consistency between
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Figure 7. Grids in the frequency–slowness do-
main representing the density of DC solutions. (a) DC
Solutions of equation (3) for the perfect SPAC curves
of Figure 2. The theoretical DC is represented by a
line. (b) DC Solutions of equation (3) for brute SPAC
curves of Figure 6. The chosen limits of the denser
zone are delineated by thin black lines. The thick
black and dotted lines represent the wavenumber lim-
its deduced from the observations (see text).

SPAC curves is observed are systematically rejected. Once
the DC limits are set, it is straightforward to reject the con-
tradictory data on the SPAC curves. This procedure is tested
on the preceding pure synthetic case, where no contradictory
samples are present in the SPAC curves. Figure 7a shows the
resulting frequency–slowness grid obtained after seeking all
possible solutions. The DC can be entirely retrieved from the
SPAC curves between 1 and 10 Hz. When the SPAC value
is less than 0.025 (arbitrary threshold to avoid an infinite
number of solutions), no solution is calculated. This is why,
for high frequency, the large apertures provide no points and
hence the density vanishes to one or two occurrences only.

The consistency of the gray dots of Figure 8 is assessed
in Figure 7b, where a zone with a high solution density
clearly appears from 2.5 to 6 Hz. The maximum number of
consistent rings is three, over a total of five. From the grid
of Figure 7b, we delineate the lower and upper limits of the
DC (thin lines) and we set the wavenumber limits (bold lines
at 0.025 and 0.18 rad/m) of the denser zone, which also
correspond to the f-k theoretical limits. Figure 8 shows with
black dots the SPAC samples that have DC solutions within
those limits. The lower wavenumber limit excludes the part
of the SPAC curve where experimental points (below 2.5 Hz)
do not obviously fit with a Bessel’s function (see, for in-
stance, ring 52 to 62 m). Within the imposed limits, data
correctly fit the theoretical SPAC curves (black lines), prov-
ing the relevance of the selection process.

We run three inversion processes with distinct seeds and
with the parameter set used in the preceding section (Ta-
ble 1). The generated ensemble of models is plotted in
Figure 9. Given the standard deviations, the general fit of all
the SPAC curves (Fig. 9d–9h) is very good, with a minimum
misfit around 0.38. In Figure 9b, we compare the true Vs

profile with the inverted models: a very good resolution is
achieved over the first 20 m, and a significant velocity in-
crease is expected below. However, the Vs value in the lower
part of the model is poorly resolved, mainly because of the
low energy level below 3 Hz (see the Fourier spectrum in
Fig. 4b). The Vp profile (Fig. 9a) shows a very wide distri-
bution, providing little valuable information in this case. The
only information is that Vp is less than 2500 m/sec in the
sediment layer. The DC curves of the obtained solutions are
plotted in Figure 9c, as well as the theoretical one corre-
sponding to the true velocity model (black line). The agree-
ment with the low-misfit solutions is globally good, particu-
larly for frequencies greater than 3.5 Hz.

We are now investigating the influence of the a priori
parameterization on the results. The usual strategy is to try
to find good-fitting models with the least possible number
of layers, for instance, considering a power law increase of
the velocity within sedimentary layers (Scherbaum et al.,
2003). For our synthetic tests, we supposed a two-layer
model. We test the effect of having more parameters, and
the first case is a three-layer model (two sedimentary layers
over the bedrock), whose characteristics are given in Table
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Figure 8. (a) to (e) Brute SPAC curves calculated
from the noise synthetic seismograms for the rings
defined by Figure 1b, averages, and standard devia-
tions (gray dots). Black dots are the samples that have
at least one solution for the DC inside the range de-
fined by Figure 7b. The black lines are the theoretical
true SPAC curves computed from the true model.

2. The number of parameters to invert are five (Vp is held
constant for comparison purposes). The Vs models resulting
from the inversion are shown in Figure 10a. Comparison of
Figures 9b and 10a shows that lowest misfits are identical
(around 0.39) and that the best models are similar, with a
good resolution down to 20 m and a large uncertainty at
depth. SPAC curve inversion proves to be robust and to pro-
vide a good resolution down to 20 m in this case. If we
increase the number of layers (to 11) with fixed thickness
(from 2 to 4 m) and if we reject low-velocity layers, we
obtain the solutions of Figure 10b. Again, Figure 10b com-
pares very well with Figures 9b and 10a. In contrast, allow-
ing low-velocity layers in the same structure leads to the
models shown in Figure 10c. Almost all models can explain
the data curves in an equivalent manner and with a good
misfit. In this case, the inversion is nearly uninformative
about the Vs structure, owing to equivalence problems lead-
ing to a strong nonuniqueness.

For earthquake engineering, the Vs profile at a given site
is the major information used to assess site effects. In Figure
11, we show the SH transfer functions, which have been com-
puted for all the models of Figure 10a. Qs has been taken as
25 for sediments and 100 for the basement. The theoretical
SH response is drawn in black on the same figure for com-
parison. The resonance frequency (2 Hz) is globally well
retrieved by the good-fitting models, as its value mainly de-
pends on the Vs profile in the sediment layer. In contrast, the
amplification at this frequency varies dramatically, resulting
from the uncertainty regarding the bedrock velocity.

Real Site: Brussels, Belgium

The ambient vibrations recorded in Brussels and ana-
lyzed by Wathelet et al. (2004) with the frequency-wave-
number (f-k) method were processed with the SPAC tech-
nique described here. One of the five array geometries
available for this data set (radii 25-75-130) was used for the
SPAC computation. A complete analysis of the whole data
set falls beyond the scope of this article. The array layout is
shown in Figure 12a, and its azimuth–distance plot is shown
in Figure 12b. Six rings were chosen, each one with six to
nine pairs of stations.

SPAC curves are computed from the measured signals
(1 h and 55 min) in the same way as for the synthetic case.
The results are shown in Figures 13d to 13i with gray and
black dots. The consistency of those curves is tested with
the grid method proposed in this article (Fig. 14). From the
density plot, a common DC can be clearly identified from 1
to 3 Hz, between the thin black lines and the constant wave-
number limits (thick black lines at 0.008 and 0.056 rad/m).
The SPAC samples that have no DC solution between the
thin black lines and the wavenumber limits are rejected (gray
dots in Figs. 13d to 13i). The observed SPAC curves might
not necessarily follow the theoretical shape of the modal
curves, for instance, if various modes have similar energies
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Figure 9. Inversion of the noise synthetic SPAC curves selected in Figure 8 (black
dots). (a) Vp profiles: true model (black line) and inverted models ranked by their SPAC
misfit (common gray scale). (b) Vs profiles: same legend as for Vp. (c) Dispersion curves
of generated models compared to the theoretical DC (black line). (d) to (h) SPAC ratios
for the chosen rings plotted against frequency, average, and standard deviation of data
points to be fitted (dots).

Table 2
Parameters for Two Sediment Layers with Uniform Vs, Overlying an Infinite Half-Space

Layer Thickness Vp Vs/Vp Density Vp Variation

Sediments 10 to 15 m 1350 m/sec 0.01 to 0.707 2 t/m3 —
Sediments 15 to 50 m 1350 m/sec 0.01 to 0.707 2 t/m3 —
Half-space — 2000 m/sec 0.01 to 0.707 2 t/m3 —

Vp, compressional velocity; Vs, shear velocity. See Table 1 for comments about “Vp variation” and “�”.

in the noise wave field. This problem of a wrong mode iden-
tification may be also encountered with f-k-based methods.

The selected SPAC curves (black dots) are inverted with
five distinct runs of the neighborhood algorithm. The model
parameterization is the same as that by Wathelet et al. (2004)
(Fig. 9b, Table 2), with a sediment layer exhibiting a velocity

gradient and overlying a half-space. The generated models
are plotted in Figures 13a and 13b for Vp and Vs profiles,
respectively. Their corresponding SPAC curves are shown
with the same gray scale in Figures 13d to 13i. The DCs
calculated for all models are displayed in Figure 13c and
compared with the DC obtained with the f-k method (Wath-
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Figure 10. Inversion of the noise synthetic SPAC curves selected in Figure 6 (black
dots) with three distinct type of parameterizations: (a) a three-layer model, (b) an 11-
layer model with increasing velocity profile and (c) totally free Vs profile for an 11-
layer model. The black line represent the theoretical Vs profile.

Figure 12. (a) Map of sensor locations for the real
array configuration (Brussels, Belgium). (b) Azi-
muth–interdistance plot: each dot represents one pair
of stations. The pairs of gray circles show the limits
of the rings chosen for SPAC computation.

Figure 11. SH response spectrum for models of
Figure 10a. The inversion results are compared to the
theoretical SH transfer function (thin black line).
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Figure 13. Inversion of the real SPAC curves (black dots). (a) and (b) Vp and Vs

profiles, respectively: inverted models ranked by their SPAC misfit (common gray
scale). (c) Dispersion curves of generated models compared to the DC obtained with
the f-k method (gray dots, from Wathelet et al., 2004). (d) to (i) SPAC ratios for the
chosen rings plotted against frequency, average, and standard deviation of data points
to be fitted (black dots). The gray dots are the rejected points according to the criteria
defined in Figure 14.

elet et al., 2004). The curves are quite similar, and the un-
certainty range of the Vs profile is almost the same as the
one calculated with the f-k method.

Conclusions

A direct search inversion method (the neighborhood al-
gorithm) is applied to spatial autocorrelation (SPAC) data in
order to extract Vs profiles from simulated array measure-
ments of ambient vibrations (vertical component of the
signals). In contrast to more conventional least-squares

schemes, the parameter space is deeply explored, giving a
view over the posterior uncertainties of the model. Vs as a
function of depth is directly obtained from the SPAC curves,
through a one-step inversion processing that does not require
the determination and inversion of the dispersion curve. Be-
sides its simplicity, the advantage of this method is that the
SPAC data uncertainties are fully considered during the in-
version. An original contribution of this work is the defini-
tion of a methodology for assessing the valuable parts of
SPAC curves to invert. The method was successfully tested
on different synthetic cases (one if which is presented here),
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Figure 14. Grid in frequency–slowness domain
representing the density of DC solutions of equation
(3) for real SPAC curves (gray dots in Figs. 13d to
13i. The chosen limits of the denser zone are deline-
ated by thin black lines. The thick black and dotted
lines represent the wavenumber limits deduced from
the observations (see text).

on synthetic random noise data, corresponding to a soft
sedimentary layer overlying bedrock, and on a real case.
From a practical point of view, the major limit of the method
appears to be the lack of resolution at the bottom depth,
resulting from the filtering effect of the soil layer on the
vertical components of the signals. As with other techniques
(f-k) based on the computation of the dispersion curve, the
method is unable to provide reliable information below the
depth of the major velocity contrast. On the other hand, the
Vs profile within the soil layers is robust and well constrained
if the parameterization does not allow the presence of low-
velocity zones.
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