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[1] The Neighborhood Algorithm (NA) is a popular direct
search inversion technique. For dispersion curve inversion,
physical conditions between parameters ¥y and V), (linked
by Poisson’s ratio) may limit the parameter space with
complex boundaries. Other conditions may come from prior
information about the geological structure. Irregular limits
are not natively handled by classical search algorithms. In
this paper, we extend the NA formulation to such parameter
spaces. For problems affected by non-uniqueness, the ideal
solution is made of the ensemble of all models that equally
fits the data and prior information. Hence, a powerful
exploration tool is required. Exploiting the properties of the
Voronoi cells, we show that a dynamic scaling of the
parameters during the convergence to the solutions
drastically improves the exploration. Citation: Wathelet, M.
(2008), An improved neighborhood algorithm: Parameter
conditions and dynamic scaling, Geophys. Res. Lett., 35, L09301,
doi:10.1029/2008GL033256.

1. Introduction

[2] Inversion techniques are widespread in geophysics as
attested by the number of scientific activities dealing with
their development and their application, mostly since the
beginning of the computer era. Inversion tools include
linearized methods [Nolet, 1981; Tarantola, 1987] and
direct search techniques [Sen and Stoffa, 1991; Lomax
and Snieder, 1994] that gained success during the nineties
parallel to the development of the power of desk computers.
For inversion problems with a reduced number of
unknowns, direct search methods are probably best suited
because of their ability to correctly map the uncertainties of
the problem in the case of non-uniqueness (distinct equiv-
alent solutions).

[3] The Neighborhood Algorithm (NA) [ Sambridge,
1999] is a stochastic direct search method that belongs to
the same family as Genetic Algorithms (GA) [Lomax and
Snieder, 1994] or Simulated Annealing (SA) [Sen and
Stoffa, 1991]. Compared to a basic Monte Carlo sampling,
these approaches try to guide the random generation of
samples by the results obtained so far on previous samples.
The areas of the parameter space where no interesting
solution can be found are less sampled than promising
areas. All methods require several tuning parameters to
control the balance between exploitation and exploration,
i.e. between a quick convergence to a minimum of the misfit
function and slow investigation of nearly all local minima to
find the global one or identify equivalent minima.
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[4] NA makes use of Voronoi cells to model the misfit
function across the parameter space. The misfit function is
supposed to be known for n,, samples randomly distributed
or not over the parameter space. A Voronoi cell centered
around one of these samples is the nearest neighbor region
defined under a suitable distance norm (usually Euclidean).
The union of all cells with a low misfit is the area of interest
where new samples with small misfits are expected. The
size of this ensemble is defined by the tuning parameter n,.
(number of best cells to consider). Sambridge [1999]
proposed a simple but very efficient way to generate new
random samples inside a Voronoi cell based on a Gibbs
sampler. n; (second tuning parameter) new samples are
generated and added to the original population (ny/n,
samples per cell are added). The geometry of the initial
Voronoi cells are modified to include these new n; samples.
The process is repeated it,,,, (last tuning parameter) times
until an acceptable sampling of the solution is obtained.

[s] We take the classical inversion of shear wave velocity
profiles from surface wave dispersion curves as an example.
We first show that a good parameterization requires a
parameter space with irregular conditions whereas the
original NA is limited to an hyper-box. A suitable modifi-
cation of the NA kernel is proposed. Secondly, we improve
the exploration capabilities of NA by playing on parameter
scales. It is particulary useful for inversion problems affected
by non-uniqueness.

2. Searching Inside Irregular Boundaries

[6] In tabular ground structures (made of homogeneous
and horizontal layers), typically used for the computation of
dispersion curves, four parameters can fully describe an
elastic layer: V,, H (thickness), V,,, and p (density). They are
given by decreasing influence, especially the density can be
considered as constant. V; and V), are directly related
through the Poisson’s Ratio(v) which generally ranges from
0.2 to 0.5 in the nature. Historically, the effect of V,, over the
dispersion curve has been considered as negligible. Never-
theless, Wathelet [2005] showed that this is not true for all
Poisson’s ratio values, particularly for those encountered for
hard rocks (below 0.3).

2.1. Parameters of a Layer: V,, V, or v?

[7] The usual approach, designed for linearized methods,
divides the tabular structure into homogeneous layers with
fixed thicknesses. Inside each layer, two options are gener-
ally available [Herrmann, 1994]: fixing V), or v. V is left as
the unique free parameter in all cases. V), profiles measured
by refraction experiments have their own uncertainties as
recently recalled by Ivanov et al. [2006], and fixing defin-
itively V), to some arbitrary value may artificially reduce the
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range of possible solutions. Thus Wathelet et al. [2004]
introduced another parameterization with two free parame-
ters per layer: V), and the ratio V/V,,, that has the advantage
to keep all parameters to physically acceptable ranges.
However, V; is the most important parameter for surface
wave problems. Not having a direct control over this
parameter during the inversion is penalizing in most sit-
uations. Furthermore, in the context of stochastic inversion
schemes, V is obtained by a non-linear combination of two
random variables with uniform distributions (¥, and V,/V,).
Hence, the prior distribution of V§ is not uniform. Though
uniform distributions cannot be considered as the total
absence of prior information about a parameter value
[Edwards, 1992], it is certainly closer to our prior knowl-
edge than any uncontrolled and non uniform distribution
(i.e. that supports some particular values rather than
others) introduced by this non-linear combination used for
computing V. The optimum parameterization would be V
and V), as free parameters compatible with Poisson’s ratio
conditions.

2.2. Freeing Thicknesses

[s] With the increasing success of stochastic inversion
methods, velocities and thicknesses are both set as free
parameters [e.g., Wathelet et al., 2004; Picozzi et al., 2005],
which greatly helps reducing the number of degrees of
freedom [Scherbaum et al., 2003]. Nevertheless, in a stack
of N layers, the depth of the half-space top is thus the sum
of N random variables with a uniform distribution and a
finite variance. Using the Central Limit Theorem, the prior
distribution of the bottom of the N layer tends towards a
Gaussian. Hence, considering a large number of layers leads
to generate models sticking around a median depth and not
exploring any other depths for the deeper layers. For
instance, with four layers above a half-space, the top of
the half-space has only 5% chance to lie out of 4 standard
deviations (from 85 to 315 m if the total possible range is
from 0 to 400 m, a reduction of 42.5%). A possible solution
would be to set up depth rather than thickness parameters.
To generate valid ground models, the depth parameters must
have greater values for deeper layers than for shallow ones,
requiring some additional conditions.

2.3. Low Velocity Zones (LVZ)

[9] Surface wave methods, especially for active source
experiments, are usually appreciated because they can
investigate soft layers covered by stiffer ones [e.g., Ryden
and Park, 2004]. LVZs may induce problems in the forward
computation of the dispersion curve at high frequency
(relative to the model structure): crossing modes can be
encountered. Quick and straightforward algorithms are
usually not suitable. Hence, during the random generation
of models, the dispersion curve may be impossible to
compute for some particular ¥ profiles with LVZs. It
defines an irregular limit to the parameter space that we
can only estimate by trial and error. Lack of precision
defining this complex boundary may eventually shadow
parts of the parameter space containing low misfit solutions.
Another aspect of LVZs is that they can potentially increase
the number of possible solutions and the non-uniqueness of
the problem. If our prior knowledge about the geological
structure does not justify the presence of any LVZ, it would
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be interesting to generate random ¥ profiles without LVZ,
requiring a simple condition at each interface.

2.4. Implementation

[10] In the above discussion, reviewing three aspects of
the parameterization of tabular ground structures clearly
shows the need for an inversion algorithm confined in a
parameter space with complex boundaries. We assume the
parameter space bounded by an hyper-box (classical limits)
and by irregular limits, due to physical conditions, numer-
ical limitations or prior information (Figure 1). The misfit
computation is possible only inside the intersection of these
two ensembles. By contrast with the hyper-box, the irreg-
ular limits may have no explicit definition (e.g. failure of the
dispersion curve computation in case of strong LVZs).

[11] At the beginning of each iteration, the original NA
generates ng new models inside 7, cells. The corresponding
misfits are computed in a second step by a user-provided
function returning a floating-point value (implementation of
the forward problem). To correctly handle failures of the
misfit computation, we propose a function which returns an
additional boolean value (true if it is a valid model). The
generation of models by the Gibbs sampler must be inte-
grated with the computation of misfits. n. = ny/n, new
samples are produced for each cell of the active region
(union of all best n, cells). If n. is not an integer, it is
rounded down and the remaining models are randomly
distributed on the active cells. For each cell (repeated n.
times), the Gibbs sampler is used to generate a model and
its misfit is directly computed. In case of success, the
model is accepted the same way as in the original algorithm.
If not, the returned misfit is ignored (it can be 0) and
another model is randomly generated inside the cell until
success. The original rigid concept of iterations has also
been modified in a recent parallelization of the NA core
[Rickwood and Sambridge, 2006]. Our conditional solution
could be also developed for the parallel algorithm.

[12] When the active region is close to one of the complex
boundaries, Voronoi cells where new samples are generated
can be cut by one of them and only a small percentage of
their multi-dimensional volume may be included inside the
valid region (e.g. cell / in Figure 1). Thus, there might be
only very little chance to generate one good sample even
after a lot of trials. A way of solving this problem is to count
all accepted and rejected models per cell. If the proportion of
rejected models exceed a threshold (e.g. 90%), the cell is
thrown away from the active region and replaced by the cell
with the best misfit currently outside the active region.

[13] When there are a lot of conditions to satisfy, this
random generator is not very efficient. A lot of invalid
models must be rejected before accepting just one. If an
explicit definition of the conditions is available, the Gibbs
sampler can be modified to always return a valid model. For
each parameter we define a list of conditions. A condition is
a C++ object (a data structure with dedicated functions) that
links several parameters together (it can be as simple as p1 <
p2). It has a mandatory function that returns the admissible
range for each of its parameters, keeping all others constant.
We assume that at least one model has successfully passed
all conditions (model A in Figure 1). According to the
original NA, to stay within cell &, parameter i can take any
value from x; to x;. To fulfill the complex conditions x; is
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Figure 1. A uniform random walk restricted to a Voronoi
cell and by complex boundaries (modified after Sambridge
[1999, Figure 3]). Starting from a sample inside the cell (4),
a Markov-Chain random walk is achieved by introducing
random perturbations along all axes successively. Each
random perturbation (for instance along axis 7) is bounded by
the rectangular boundary (/; and u;), by the limits of the
Voronoi cells (x; and x;) and by the intersection of axis i
passing by A with the complex boundary (x;). Asymptoti-
cally the samples produced by these walks are uniformly
distributed inside the cell regardless of its shape [Sambridge,
1999]. The light grayed area is the region outside the
parameter space still inside the rectangular boundary.

replaced by x;. x,, is computed exactly by the intersection of
all admissible ranges given by all conditions available for
parameter i keeping all other parameters constant. Hence,
model A can be perturbed along axis i and the obtained
model B is also satisfying all conditions. It is correct even if
the admissible region is not convex. The process is repeated
for all axes as in the original algorithm.

[14] Contrary to the original NA, even the initial popu-
lation of samples (ny) is generated by a Markov-Chain
random walk based on a first valid model. The latter is
obtained after a few iterations with an approximate defini-
tion of the complex boundary (because the current model is
still outside the valid region).

[15] Thanks to this generic definition of conditions, we
were able to introduce a new flexible parameterization that
decouples all profiles of a tabular ground structure: V), and
V are defined separately with any kind of velocity variation
inside the layers (uniform, linear, or power law). Prior
information on ¥, profile from refraction experiments can
be introduced without constraining the layering for Vj
profile. Poisson’s ratio can be kept to reasonable values
and LVZs are under control.

3. Exploration Capabilities of Parameter Scales

[16] Sambridge [1999] showed that one of the striking
features of the Neighborhood algorithm is its ability to adapt
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the sampling density and the center of sampling when better
data-fitting models are discovered. The NA can jump out of
local minima thanks to the randomness of the process and it
can quickly evolve to a better solution. These properties are
only meaningful for difficult inversion problems where the
misfit function has multiple minima (e.g. the dispersion
curve inversion).

[17] The fast escape comes directly from the geometrical
properties of the Voronoi cells as illustrated in Figure 2 a.
For instance, we assume that at the end of n iterations the
best sample is 4, the dark gray cell defines the region of best
interest (n,. = 1). If point B (white dot) is a new sample
drawn randomly inside the dark gray cell, the Voronoi
geometry at iteration n + 1, associated with the total
population (first 10 samples and the new one), is the one
shown with the dotted lines in Figure 2 a. If the misfit in
point B is better than the misfit in point 4, the region of
interest clearly extends beyond its previous limits.

[18] Based on distances between sample points, the
Voronoi geometry is not invariant to axis scaling factors.
In Figure 2 b, the sample points are plotted with a different
scale for the horizontal axis (factor 10 compared to Figure 2
a). The cell limits calculated for this second configuration
are mostly aligned parallel to X axis. In such a scaled space,
an equivalent process to the one presented for Figure 2 a
would generate point B’ whose associated cell has a totally
different shape than the one related to point B. Cell B covers
31% of the total Y range whereas cell B’ covers only 8%.
On the contrary, for X axis, cell B covers only 22% whereas
cell B’ covers 100%. Hence, cell B’ can potentially explore
all values of parameter X and has a strongly limited search
interval for parameter Y. By contrast, cell B explores all
parameters with approximatively the same weight.

[19] The influence of scaling factors may also be esti-
mated from the number of inter-connections between cells,
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Figure 2. Effects of the axis scaling on cell connectivity
for a 2D Voronoi geometry. (a) The two axes have the same
scale (from —0.5 to 0.5). The light gray and the dark gray
cells are neighbors. (b) X axis is scaled by a factor 10 (from
—0.05 to 0.05). The two cells are not neighbors any longer.
The dotted lines depict the modified Voronoi geometry after
the addition of a point B (or B) at the limit of the cell
centered around point A.
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Figure 3. Effects of the parameter scaling on the search capabilities. The same high frequency dispersion curve (from 10
to 40 Hz) is inverted with the same parameterization (4 layers, 11 variable parameters). In all cases, 10050 samples are
generated by a NA sampler (200 iterations with n; and n, set to 50). All V; profiles with a misfit less than 1 are
systematically shown. (a—c) The parameter space is scaled only at the beginning of the inversion process (static scaling, see
text). (d—f) The parameter space is continuously scaled after each iteration (dynamic scaling, see text). Inside each group,
three distinct seeds are randomly chosen to check the robustness of the results. The black curve is the true V; profile.

which supports the exploration behavior of the NA. If we
consider two neighbor samples (light and dark gray cells) in
Figure 2 a, we observe that they are not neighbors in the
same parameter space stretched along Y axis. In the second
case, the region of interest cannot move towards lower Y
values, blocked by previously generated samples with a
higher misfit.

[20] If the parameter space contains parameters with
strongly different sensibilities (e.g. V; at different depths),
the shape of the active region (union of all best #,. cells) may
evolve during the inversion. Its size along well resolved axis
is shortened and remains almost constant for poorly re-
solved parameters. From the results of Figure 2, as the
number of iterations increases, this elongation leads to a
better exploration of the already well resolved parameters.
To the contrary, an efficient inversion process must be more
exploratory for less resolved parameters. In the original NA,
the parameters are eventually scaled to [0, 1] at the
beginning of the inversion (called herein ‘static scaling’).
By contrast, we propose a ‘dynamic scaling’ to maintain the
exploration as constant as possible during the inversion. At
the end of each NA iteration, the hyper-box surrounding the
active region is computed. Each parameter is scaled by the
size of the hyper-box along the corresponding axis. Scaling
factors are tracked from the beginning to map scaled to real
values and vice-versa.

[21] Figures 3a—3f compare the sampling achieved with
static and dynamic scaling for the inversion of a realistic
high frequency dispersion curve. The first 15 m of the
ground structure are well recovered in all cases. In
Figures 3a—3c, the inversion is clearly trapped in local

minima and the minimum achieved misfit is much higher
(0.2) than for the dynamic scaling (Figures 3d and 3e, 0.01).
In Figures 3d—3f, a loosely constrained parameter such as
Vs in the deeper layers is much better investigated. Through
the three distinct random seeds tested in Figure 3, the
dynamic scaling results look quite robust: every inversion
run gives almost the same picture compared to the static
case. The maximum penetration depth of the method can be
estimated with much more objectivity with a better explo-
ration power. This example demonstrates one of the direct
benefits of this improvement for surface wave practitioners.

4. Conclusion

[22] We improved one of the popular direct search
inversion techniques (Neighborhood Algorithm) originally
well suited for investigating parameter spaces with simple
rectangular limits. For practical inversion cases in geophys-
ics, prior information about the geological settings or the
geophysical parameters are to be included in the inversion
to reduce the non-uniqueness of the problem. Furthermore,
physical conditions may exist between parameters such as
Poisson’s ratio linking V), to V. To solve these questions,
we developed a new algorithm capable of generating
random samples inside a parameter space with irregular
boundaries. In addition, we drastically improved the explo-
ration behavior of the original algorithm through a dynamic
scaling of parameter values. An efficient search of the
parameter space ensures a convergence towards the global
solution especially if sensibility is not equally distributed
among parameters. Better uncertainty estimations are also
naturally expected.
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[23] Parameter conditions were mostly developed for the
inversion of the dispersion curves of surface waves for 1D
structures. It offers an easy way to introduce prior informa-
tion in a fully controlled manner which may partly solve
non-uniqueness. The range of applications is certainly not
limited to the dispersion curve inversion. The non-unique-
ness being present in a lot of other geophysical problems,
we expect that this method might be of interest. The
conditional technique developed here could also be adapted
into Genetic Algorithms and Simulated Annealing codes.
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