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1 Introduction!

Microtremors are the background motions of the solid Earth which occur con-
tinuously and are apparently unrelated to specific event such as earthquakes and
explosions. In seismology, the microtremors are taken as a seismic noise which
makes it difficult to identify the specific events in seismic records.

The components of microtremors with dominant frequencies usually above 1 Hz
are considered to be generated by various human activities such as trafic, industries,
construction work etc. so called cultural noise. Atmospheric and oceanographic
disturbances also cause the generation of microtremors of which the dominant fre-
quencies occupy a broad low-frequency range from less than 0.01 Hz to, say, 0.5 Hz,
i.e. period from 1 s to more than 100 s.

Seismograms recorded at permanent or temporary seismic stations frequently
show that the amplitudes and periods of microtremors vary very often with high
irregularity, and their variation depends on where and when the seismograms are
recorded. The variations also show that the complete behavior of microtremors could
not be described in terms of a mathematical formula which can express amplitudes
of microtremors as a deterministic function of both time and space. Practically,
we cannot theoretically determine an exact amplitude of microtremors at a time
in a given place. Considering from the probability theory, we could say that the
amplitude of microtremors at a time in a place is a random variable, so that the
complete function of the amplitude against time should be called a random process.

If we observe microtremors at a place for a long time and divide the observed
record into a number of time intervals, microtremors in those intervals seem much
the same one another. This implies that the statistical propertieé of microtremors
are unchangeable over the time observed, i.e. changing of microtremors in amplitude
and period at a place is almost the same in all the time intervals; consequently, the
microtremor can be called a stationary random process.

Considering from the standpoint of seismic wave theory, microtremors consist

IThis note is revised in July, 1997.



of surface waves such as Rayleigh and Love waves, and body waves from many
sources randomly distributed in azimuth and distance around the observation point.
Some portions of the microtremors are nonpropagating and appear to be incoherent
between records from different sensors separated by small spatial lags. Of these _
waves, the surface waves must mainly constitute the microtremors, since the greater
part of energy of microtremors must be supplied with the vibration energy due to
elastic disturbance on the surface of the Earth.

According to the fact that the microtremors must involve the surface waves,
observations of microtremors should provide information about the underground
structure at the observation site, because the surface waves have such a dispersion
property that phase velocities are changed with frequency or period depending on
the underground structure.

The problem of measuring phase velocities of surface waves in microtremors
has been studied by a number of authors. In these studies, there are two principal
methods to be applicable to the measurement of phase velocities: the frequency-
wavenumber (f-k) method (Capon, 1969) and the spatial autocorrelation (SPAC)
method (Aki, 1957).

The f-k method makes use of a seismic array consisting of a number of seis-
- ‘mometers spatially placed. The method was originally developed in Montana, USA
‘to discriminate between earthquakes and underground nuclear explosions using a
large aperture seismic array (LASA) (e.g. Green et al., 1966). Actually, the algo-
rithm of the method applied to the observation of microtremors in the period range
shorter than 3 or 4 s has well provided undergroud structures down to depths of hun-
dreds meters (ﬁorike, 1985) and to depth-s of a few thousand meteré (Matsushima
and Okada, 1990), although the spatial extent of seismometer arrays they employed
was extremely smaller than the LASA.

The SPAC method was originany developed by Aki (1957). This method, us-
ing a special array, estimates spatial autocorrelation coefficients of microtremors
from which phase velocities of surface waves can be estimated. Observations to

be employed in the SPAC method can be made with a relatively small number of



seismometers (Okada and Sakajiri, 1983) and data processing and analyzing for the
method are so simple that even personal computers are able to process. The method
is helpful not only when reconnaissance surveys or quick results are required, but
also when surveys have to be made within a limited budget. Furthermore, this
method is able to estimate underground structures explicitly for S-wave velocities,
because the method can identify Love waves in microtremors also in a dispersion

form, if the observation is made by a circular array with 3-component seismometers.

2 Stationary Process

Let X(t, £) be a stationary random (stochastic) process which depends on a
time parameter ¢ and a location vector in the plane € (z,y). The process will have

a spectral representation (Yaglom, 1961; Priestley,1981)

X(t,€) :/]/_o:oexp (iwt + ik €)dZ(w, k) 1)

where w is the angular frequency (in radians per unit time), k£ the wavenumber (in
radians per unit distance) and Z is a random spectral process. This means that any
stationary random process in time and space can be regarded as a continuous sum of
independent waves with different frequencies w and wavenumber k. In other wards,
any stationary process can be represented as the sum of sine and cosine functions
with random coefficients dZ(w, k).

The stochastic process Z(w, k) has the special property that its increments at
different values of w and k are uncorrelated, i.e. for any two distinct frequencies, w,

w' and also for any two distinct wavenumbers k, k', the random variables,

dZ(w, k) = {Z(w+ dw, k + dk) — Z(w, k)},
and

dZ(w', k') = {Z(w' + do', k' + dk') — Z(o', k')}



are uncorrelated. The process Z(w, k) is called a ‘doubly orthogonal process.’ In
addition, there must obviously be some intimate relationship between the properties
of the brocess Z(w, k) and spectral properties of X(¢, £). It turns out that this
relationship is most conveniently expressed in terms of the function H(w, k), the

(non-normalized) integrated spectrum of X (¢, €), that is,
E[|dZ(w, k)|*] = dH(w, k), (2)

where E denotes the mean of expectation, i.e. at each frequency w, and each
wavenumber k, the increment in H(w, k) is equal to the mean of the squared
amplitude of the corresponding component in eq.(1). When X(¢, £) has a purely

continuous spectrum, the increment in H (w, k) may be expressed as
dH(w, k) = h(w, k)dwdk
h(w, k) being the (non-normalized) spectral density function, then eq.(2) reduces to
E[|dZ(w, k)|*] = h(w, k)dw dk (3)

Thus the process Z(w, k) has the following properties;
(1) EldZ(w, k)] = 0, for all w and k, (4)
(ii) E[|dZ(w, k)|?] = dH(w, k), for all w and k, (5)
and (iii) for any two distinct frequencies w, w’ (w # w') and two distinct wavenumbers
k. k' (k+#Ek')
EdZ*(w, k)dZ(w', k)] =0 (6)
where * denotes the comi)lex conjugate. |
In our case it will be convenient to consider the representation of the process

in polar form. Let

& =r(cosb,sinf), and k = k(cos¢, sing)



so that a stationary random process X(t, £) is

X(t,r,0)= [ Z I / " expliwt + irk cos(0 — $)}dC(w, k, ¢) (7)

where
dZ(w, k) = kdZ'(w, k, ¢)
=d((w, k, ¢)
This means that any stationary process is the sum of independent waves coming
from direction ¢ with angular frequency w and wavenumber k.

Since microtremors can be regarded mainly as an ensemble of the surface waves,
we assume that at each angular frequency w, the energy is concentrated at a single
wavenumber; that is, the velocity is a single valued function of frequency. This means
that only one mode of the surface waves could be extracted from microtremors. If \%re
observe the vertical component of microtremors, the dispersive Rayleigh waves can
be chosen as the subject to study. The above assumption corresponds to the SpeCtI_‘a,l

process ( being concentrated on a curve [w, k(w)], then eq.(7) may be reduced to

Xt ol = /:: j:x exp{iwt + irk(w) cos(8 — ¢)}d((w, ¢) (8)

Here we assume that

E[ld((w, #)|"] = dH(w, §)
= h(w, ¢)dwdé (9)

where H(w, ¢) is the frequency-direction integrated spectrum of X, and h(w, @) is
the frequency- direction spectral density which gives the average energy at frequency

w arriving from direction ¢.



3 Spatial Autocorrelation Method

3.1 Vertically Polarized Waves in Microtremors

If microtremors can be regarded as an ensemble of the surface waves, the ob-

servation of the horizontal component may record both Rayleigh and Love waves

3

while the observation of vertical component can record the Rayleigh waves only.

In the present section, we discuss the vertically polarized waves in microtremors

7

which may be considered as an ensemble of the dispersive Rayleigh waves.

3.1.1 Autocovariance Function

We define an autocovariance function at a location (r, ) as
R(7,r,0) = E[X"(t,r,0) X(t + 7,1,0)]
oo oo 2w p2m
= / / ]0 fo expli(w’ — w)t + w'r + ir{k' cos(8 — ¢') — k cos(6 — ¢)}]
'E[dck(wa QS)dC(L"”: ‘33;)]& (10)

where X is the complex conjugate of X. Since X(¢,r,8) is a stationary process

for all time ¢ and space (r,0), the left hand side of eq.(10) is the aoutocovariance
| function, and is therefore a function of 7 only and does not depend on ¢ and (%;8)
This can be so only if E[d{*(w,¢)d((w’,¢')] = 0 for all w # w’ and ¢ # ¢'. Hence,
eq.(10) is reduced to

fKlr)= LZ /:_ﬂ exp(iwt) E[|dzeta(w, ¢)|?], (11)
and, using eq.(9),
R(r) = ]_ Z fo i e 2B

= [ expliom) [ [ h(w, 6)d4] do. (12)



If we calculate the azimuthal sum of the frequency-direction spectral density h(w, ¢),

the spectrum of the process at a single point in space, ho(w), is obtained, that is,

ho(w) = [ hew,4) ds, (13)

then R(7) can be written as

R(r) = f Z exp(iwr )holw)duw. (14)

If R(7) decays to zero ‘fast enough’ (as 7 — F00), the spectrum of the process at
a single point in space, ho(w), is given by the Fourier transform of the autocovariance

function R(7), that is,

Bl zi 7 expl(—ieor) R(r)dr. (15)

T J—eo

Setting 7 = 0 in eq.(14) we have

R(0) = E{IX(t,r,0P) = [ ho(w)de, (16)

which represents the total power (i.e. the power contributed by all frequency com-

ponents) of the process (Priestley, 1981).

3.1.2 Spatial Autocorrelation Coefficient

For the observation to derive phase velocities from microtremors we consider
a special design of array, which consists of seismometers equally spaced on a circle
and one seismometer at the center. The stationary random process at the center of

the array may be written from eq.(8)

X(4,0,0) = [ exp(iwt)d((w,9), (17)

and also the process at a point (r,8) on a circle with radius r may be written

xro=[" [ w2 ik sl — B dtlad), (18)



For these processes, we define a spatial autocovariance function by
S(r,0) = E[X*(t,0,0) X(t,r,0)]
o foo  f2r 2w
B / / ] f exp{i(w’ — w)t + irk’ cos(6 — ¢')}
oleasde Js
E[dC (w, 9)dC(, 4], (19)

Since X(t,r,0) is also stationary process in space, the left hand side of eq.(19),
being the spatial autocovariance function, is therefore a function of r and 6 only.
In addition, d(*(w,¢) and ((w', ¢') are uncorrelated, because of the orthogonally
property of {(w, ¢), so that

Eld(*(w, ¢)d¢(o', 4)] = 0, (20)

for all w # ' and ¢ # ¢'.

Hence, the spatial autocovariance function may be written as

S(r0) = [ [ exptirkcos(0 - $)} Blld¢ e, )P (21)

Substituting eq.(9) into eq.(21),

5(,0)= [ z [ / " explirk cos(8 — §)}h(w, $)dg] dw (22)
- /_Z g(w,r8)dw, (23)

where
9(r,0) = [ explirk cos(6 — )} h(w, $)ds. (24)

The function g(w,r,8) is called a spatial covariance function at frequency w by

Henstridge (1979), which measures the covariance at frequency w between the signals

observed at the origin of a circular array and at a point on a circle (r, 8).
Equation(24) for r = 0 and § = 0 gives the spatial covariance function at

frequency w at the origin itself and is coincident with the spectrum of the process



as

9,0,0) = [ h(uw, ¢)ds = hofc) (25)

Setting again r = 0 and 6 = 0 in eq.(22), the spatial autocovariance function

at the origin, that is, the total power of the process, is given

So = 5(0,0) = E[|X(t,0,0)]
- [ ‘: [ I " h(w,é)dq’:] o

" /_ "; ho(w)dw, (26)

which is equal to R(0) in eq.(16), as is obvious from the definition.

The function ho(w) is called the power spectral density function of X (¢, £), ((\):r\
more simply, the spectrum of X (¢, £)), and it plays a fundamental role in the spectral
analysis of such stationary random processes as microtremors.

We calculate the average of spatial autocovariance function with respect to

azimuth at the origin of a circular array,

5= 5-

27 roo
= 2i / / g(w, r, 8)dwdd
wJo —00

fo " S(r, 0)d6 (27)

= o [ [ explirk cos(0 - ¢)}h(w, ¢)dgduds
= [T [ b, $1dods [ [ explirk cos(0 — 4)}s]
= [ e Rl
= [ sorkydo [ b, $)ds, (28)

where Jp is the Bessel function of the first kind of zero order. Then, using eq.(13) or



eq.(25), we obtain
5(r) = / ho(w)Jo(rk)dw. (29)
Here we define an averaged spatial covariance function at frequency w, §(w,r),

)= % /0 " 9w, r, 8)d6. (30)

Using this equation, the averaged spatial autocovariance function may be expressed

as

50 = [ glw,r)de, (31)

—00

and comparing this equation with eq.(29), we obtain
9(w,r) = ho(w)Jo(rk) (32)

We define the spatial autocorrelation coefficient at frequency w, p(w,r); that
is, the averaged spatial covariance function is normarized with the spectrum of the
process ho(w), which is the same as the autocovariance function with zero time lag
at a point or the spatial autocovariance function at the origin of the circular array

givéen in eq.(13) or eq.(25).

p(war) = g(war)/hO(w) (33)
= Jo(rk) (34)

In addition, eq.(33) implies that the spatial autocorrelation coefficient may be
determined also on such an array that a number of seimometers are widely placed
so that many sets of two seismometers with the distance r can be selected so as to
cover a wide azimuthal range. The azimuthal coverage of the spatial atuocovari-
ance function for these seismometer sets will also give the spatial autocorrelation

coefficient.

10



Equation(33) or (34) may be expressed as

where c(w) denotes the phase velocity of the dispersive surface waves at frequency
N _

The above theoretical consideration shows that simultaneous observations of
microtremors at some points on a circle and the center of the circle for a circular array
will give the phase velocity of surface waves contained in microtremors. Equation(35)
means that the spatial autocorrelation coefficient of microtremors will vary in the
form of the Bessel function of the first kind of zero order for different frequencies at
which the phase velocities of the dispersive surface waves will be derived.

At sites for observations there may be such a condition that seismometers are
set up with an improper seismometers equalization and/or a different coupling with
ground surface. In order to remove this condition, an alternative expression of

p(w,r) may be used,
5 1 f2m A - -1/2
plw,r) = = / §(w,,6) [3(w,0,0)8(w,r,0)| """ do (36)
T Jo
where, from (19) into which zero time lag at frequency wy is substituted,

S'(wo, r,)=E [ff*(t, wo, 0, 0)X (¢, wo, T, 9)] ,

i . (37)
SO(L‘-’O': O) 0) = E “X(ta Wo, 0, 0)|2] L]

and
X =uX,

in which X and X are the output and input microtremors respectively, and a is the
amplification factor which is assumed to be independent of w. In the derivation of

(36), however, we assumed that the total energy of microtremors is the same and a

11



constant at all sites in a circlar array, that is,
E [|X(t, Wo, T, 6)|2] = const. for all (r, 6) (38)

Equation (36) means that the spatial autocorrelation coefficient is the azimuthal
average of coherency between microtremors observed at the center of array and a

site on a circle of the array.

3.2 Horizontally Polarized Waves in Microtremors?

So far we have considered the vertical component of waves in microtremors; that
is, no polarization of waves propagating over a horizontal plane has been considered.
For the horizontal component of the waves of microtremors, two types of polarization
of the waves should be considered: These are the waves with vibration parallel to
and those perpendicular to the direction of propagation. For those polarized waves,
we assume again that those waves can be taken as a stationary random process.

To take up the polarized waves for discussion, we consider the components of
the waves parallel to and perpendicular to the direction connecting two observation
stations located, which will hereafter be called radial component and the tangential
component of waves, respectively.

We consider again a circular array which, however, consists of 3-componet seis-
mometers equally spaced on a circle with radius r and a 3-component seismometer
.at the center.

Let radial and tangential components of the waves in microtremors observed on
the array be stationary random process X, (t, z, y) and X,(t, z, y), which inevitably

include surface waves, that is, Rayleigh and Love waves. These processes may be

2Okada and Matsushima, 1989.
The analyses in the previous studies (Aki, 1957 and 1964; Ferrazzini et al., 1991) for horizon-
tally polarized waves in microtremors are incorrect, because no distinction is made between the

wavenumbers for Rayleigh-type and Love-type waves in microtremors.
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written as,

X"(t‘l z, y) = Xﬁ(t‘} z, y) 2 XrL(ta z, y)

(39)
Xo(t, z, y) = XF(t, z, y) + X[ (¢, =, v)

where subscripts r and @ refer to radial and tangential components of waves in
microtremors and superscripts R and L refer to Rayleigh- and Love-type waves.

Following the preceding sections these processes may also be written in polar

form as,

XEno=["[7] " expliist + irk® cos(0 — 8)} dZE, (w; #%. 9)
T L sl 300 r,8 ) )

(40)
oo roo 2w
Xio(t,r,0) = /_ N /0 fo exp{iwt + irk” cos(0 — 4)} dZ%, (w, k", )

where w is the angular frequency, k®(L) , the wavenumber for Rayleigh-type (L:)ve-
type) waves, Zf §‘" , the stationary random process for a radial or tangential compo-
nent of microtremors including Rayleigh-type (Love-type) waves, and ¢, the direc-
tion of waves coming to and through the array.

For these processes, we assume again that the spatial process Z% and ZZL are
concentrated on a curve [w, k®(w)] and on a curve [w, k¥(w)], respectively . The

assumption provides that the increments of the process dZ® and dZ% in (40) are
dZR(w, kR, ¢) = dZB(w, 4), and  dZ%(w, k%, ¢) = dZ%(w, ¢) (41)

For the processes at the center of array and a point on a circle with radius r, we

define again a spatial autocrrelation function for each component by

Si(r, 0) = E[X; (t,0,0)- X, (t, , 0)] (42)

So(r, 6) = E[X; (2,0, 0)- Xo (¢, 7, )

where F denotes the mean.

We assume that no coupling takes place between Rayleigh-type and Love-type

13



waves in the processes; that is, dZf; and dZkg or dZ and dZE; are uncorrelated

SO that_
E[dZF(w,¢) - dZ5y(w,9)] =0, o E |dZfy(w, 9) - dZ5(w, )] =0 (43)

The properties from (i) to ( iii) assigned in section 2 for the process Z for vertical
component of waves in microtremors are also applicable to these processes. Then,

eqs.(39) reduce to

Si(r, 0) = E [XP*(t,0,0) - XP(t, r, ) + XI*(2, 0, 0) - XX(t, 7, 0)] il
L%

Ss(r, 0) = E [X[(1, 0, 0) - X(t, 7, 0) + X[*(t, 0, 0) - X} (t, 7, )]

For the spatial autocorrelation function at frequency w, we calculate the average

with respect to azimuth at the origin of a circular array,

5w, )= % /0 7 Su(w, , 0)d0
= —;— [{Jo(p) = Ta(p)} 18 (w) + {Jo(q) + J2(9)} 1 (w)] (45)

So(w, r) = % [o " So(w, , 8)d8
[{Jo + J2(p) 16§ (w) + {Jo(q) — J2(9)}h§ ()] (46)

where Jy and J; are the Bessel function of the first kind of zero order and the second

order, respectively,
R L
p=rk and g=urk~,

and hf and hY are the power spectral density functions of Rayleigh-type and Love-

type waves in microtremors which can be written as

o = o~ [ B (1425w, 9]

= [ Bl S (47)
2w Jo

14



hE(w)dw

r{lﬂ(wa ()b) |2]

w, ¢)dpdw (48)

I

Y|~ ¥~
k-...__bk-...__.

The averaged spatial autocorrelation functions for radial and tangential com-

ponents at the array center are, from equations (46) and (48),

5,(w, 0) = 5(w, 0) = 2 {h(w) + hE(w))

%Ho(w). (49)

We define the spatial autocorrelation coefficient at frequency w for radial and

tangential components, p,(w, ) and pp(w, r) as,

pr(w, ) = S, (w, r)/Sr(w, 0)

po(w, ) = Sp(w, r)/Se(w, 0)

(50)

These coefficients, however, are helpfull only to understand. the calculating process,
and are not ‘necassarily required to discriminate between Rayleigh-type and Love-
type waves from microtremors.‘

Consequently, we obtain an equation for the wavenumber of Love-type waves,

kr, from equations (45) and (46),

Jo(q) = AJ2(q) = Jo(p) + AJa(p) (51)

where Jo(p) and J;(p) are determined by the spatial autocorrelation function for the
vertical component of waves in microtremors, if we assume that the wavenumber
for the vertical component is the same as that for the horizontal component for

Rayleigh-type waves. The quantity A in (51) being a function of the frequency w

15



and the radius of the circular array r, is given by the observed quantities as,

Xt — Jo(p) Ho(w)

Awp )= J2(p)Ho(w)

(52)

where

>t =5 (w, r) + Ss(w, r)
=t = 5 (w, r) — Sg(w, r).

which are determined from eq.(44), the first equations of (45) and (46), and eq.(49).
We can solve eq.(51) for g(= rkL) which gives the phase velocity of Love waves cF
at frequency w.

Substituting Jo(g) and J,(g) thus obtained and Jo(p) and J5(p) determined for
the vertical component into eqs.(45) and (46), we can also obtain the power spectral

density functions of Rayleigh-type and Love-type waves at the same frequency.
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4 Frequency Wavenumber Spectrun Method?®

In the late 1960’s there had been a considerable effort directed to the problem of
discrimination between earthqakes and undergrond nuclear explosions on the basis
of seismic data. This effort had led to sucessful results in the sense that it is now
possible to discriminate between natural events and explosions for events which
are above a certain magnitude threshhold. One of the factors which had led to
this sucess had been the application of detection and estimation theory in seismisc
problem.

Seismic waves propagated in the earth are generally corrupted by the effects
of local scattering and reverberation, microtremor noise, and other factors. Thus,
in order to use the recorded seismic signals for the purpose of discrimination, it is
necessary to diminish the effects due to these factors. One of the most effective
means for accomplishing this is through the use of an array of seismometers. Its
typical example is the large aperture seismic array (LASA) in eastern Montana,
USA.

The LASA has played a very important role not only in facilitating the discrim-
ination between earthquakes and underground nuclear explosions, but also in reveal-
ing the structure of seismic noise which can be characterized as stationary random
process. The latter role should be appreciated in the sense that the measurement
of microtremors as being stationary random process may derive underground struc-

tures under seismic arrays.

4.1 .Frequen(:y-Wavenu-mber Spectral Denéity Function

It is well known that a stationary random process can be characterized by
means of a spectral density function. Roughly speaking, this function provides the
information concerning the power as a function of frequency for the stationary ran-

dom process. In a similar manner, propagating waves, or a homogeneous random

3The following section is mainly extracted from a text book by Aki and Richards (1980).
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field such as a microtremor noise, can be characterized by a frequency- wavenumber
spectral density function. Loosely speaking, this function provides the informa-
tion concerning the power as a function of frequency and the vector velocities of
the propagating waves. Our purpose is to derive the different wave velocities and
directions of approach as a function of frequency from the frequency-wavenumber
spectral density function of the microtremor.

We assume again that the microtremor is stationary in both time ¢ and two
spatial coordinates z, y.

There are two basic ways of estimating the power spectrum. One is to estimate
the autocovariance function and then do the Fourier transformation. The other
is to directly calculate the Fourier transform of the microtremor and then do the
absolute-value squaring and averaging.

These two approaches will concisely be given. Writing the microtremor as
X(z,y,t), the autocovariance function as R(£,n,7), and the power spectral density

as P(ks, ky,w), we have

R(¢,n,7) = E[X(z,y,t) X(z + &y + 0,0 + 7)), (53)
\ ..=a.nd
P(ks, k) = | j [ °; R(,7,7) exp{i(wr — kot — kyn)}drdedn.  (54)

In the second approach, we introduce the discrete power spectrum. We may

define the power spectrum P, by

E[|Fimx|?
Por= lim [| Fimx|"]

(55)
LMK—o LAz - MAy - KAt

where Fj,. is the discrete Fourier transform of the digitized microtremor X (IAz, mAy, kAt)
at the points in the three-dimensional space located at an interval Az in the z-

direction, Ay in the y-direction, and At in the t-direction. The lengths of the data
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are LAz, M Ay, and KAt in the z-, y-, and t-direction respectively.

L-1 M- K-1
Fmk = Y. Y Y X(TAz,m'Ay, k' At)
I'=0 m'=0 k'=0
2xlll 2 d 27 kk’
exp (—z E —12 r;}m +1 TK )A:cAyAt. (56)

The above methods are directly applicable to the data obtained more or less
continuously in space. When the microtremor is completely stationary, a mobile
seismometer can be used repeatedly to cover any desired spatial point, making the
measurement of the autocovariance function continuous in space.

In most cases, however, the microtremor is not completely Stétiona,ry, and is
caused by atmospheric and oceanographic disturbances, which are transient. The
seismic arrays designed for the study of noise or microtremor are usually immobile
and make the continuous spatial coverage of the autocovariance function difficult.

Thus the basic methods described earlier cannot apply to most data.

4.2 Beam-Forming Method (BFM)

In practice, several approximate methods for estimating frequency-wavenumber
spectrum have been developed. The simplest methed is to combine beam-forming
with a power-spectrum estimate for the beam output. This method is called a
conventional method as well. The time shift required for beam-forming for the
point (kz, ky,w) is

k k |
t; = to -+ —'(3,' — Io) + _y-(yt = yﬂ) + Tis . (57)
W w

where ¢, is the arrival time at a reference point (zg,yo) and 7; is the station residual

(-7 is the station correction). Expressing the microtremor time-series at the i-th

station as X;(t), the beam output can be written as

N
b(ka/w, by fu, £) = —%ZXI £+ 1) (58)
te=1
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The power spectrum of b(k./w, k,/w,t) as a time series can be obtained by calcu-

lating the autocovariance and then performing the Fourier transform. The result

1s

N

Z i(t+t;) ZX(t-{*T-i-f) (59)

=1 1=1

P(kyykyw) = jexp(aw*r)dr

By definition eq.(53), we can write this result as

P ks, ky,w) = /exp (twT) dT Z —Ti,Yj — Yi,tj—ti+T1).  (60)

tJ—-].

Introducing a weight function

W (kz, Ky ;2 z exp|—ikz(z; — z;) — ixy(yi — y;) + w(r; — 75)), (61)

ij“

we shall show that our simple estimate P is a weight average of the true power

spectrum according to the formula
P(k, sy, w) // Wik, — ky)P(kz, ky,w) dk.dx,,. (62)

Inserting eq.(61) into eq.(62), we find

P(k,:, ky,w Z f-/ exp[mz(:c —z;) + ik, (y; — i)

exp[(—zkx(xj~x.»)~'ik (45 — v:) — dw(r; — )]
-P(kz, Ky,w) dk dK,. (63)

On the other hand, from the inverse transform of eq.(54),

R(z,y,T = 3 /]j (Kzy Ky, w) eXp(—1wT + ik,T + 1K,y )dwdkdK, (64)
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or

e ' . ' ’ 1 o0 : .
/ R(z,y,7")exp(iwr’)dr’ = e // P(kg, Ky,w) exp(ikzz + ikyy) dr dk,.
(65)
Putting this result into eq.(63), we have

A ) . e
Plkebym) = N Z/; exp(iwt’)dr'R(z; — zi,y; — yi, T')
4,5 o0

-exp|—tke(z; — 7:) — iky(y; — y:) —w(r; — 7). (66)

Rewriting
k k '
i i N, R i PR N T
rET S laEye s = =), (67)
we obtain
- : o ]
P(k;, ky,w) = Nz Zf exp(wT)dTR(z; — z;,y; — ¥, T + t; — t;). (68)
i U T®

which agrees with eq.(60). Therefore, the power spectrum of the beam output is a
weight average of the true power spectrum. The weight function W(«, «,) can be
calculated by eq.(61) once the station distribution (z;,y;) is known.

Two subsets of LASA seismographs and their corresponding weight functions
are shown in Fig.1.

If the weight function is a delta function centered at k, = k, = 0, our estimate
gives the exact value of the true spectrum. The figure, however, shows a spread (6
dB down from the peak at the center) of about £-0.035 km ™" for the array of diameter
22 km, and about £0.025 km™! for the array of diameter 30 km. Examples of actual
wavenumber spectra for various frequencies are shown in Fig.2. LaCoss et al.(1969)
studied the mode structure of seismic noise recorded at LASA and found that noise
at frequencies higher than 0.3 Hz is primarily compressional waves that probably

originate beneath large storms at sea; the noisiest band between 0.2 to 0.3 Hz

21



consists of both body waves and higher-mode Rayleigh waves. At frequencies lower
than 0.15 Hz, vertical-component microtremors consist primarily of fundamental-

mode Rayleigh waves.

4.3 High-Resolution Method

Another method, called the maximum-likelihood estimator, developed by Capon
(1969), is also claimed to have a higher resolution than the conventional method.
In order to understand this method, we assume that data d;; with a finite length N
obey the Gaussian distribution with'the mean value s; and the covariance matrix,

p- The probability density function for M % N variables d;; can be written as

|2/
f= WGXP 5 Z Z of (dk,— Wdi; —s1) ¢, - (69)

ta=1TkI=1

where @f’; is an element of the MN x* M N matrix ® that is the inverse matrix of

covariance matrix, whose element is

ptj = E(di; — si)(di; — s1)], (70)

.\-

-Subscripts ¢ and j refer to station, and superscripts k and [ refer to times.
Here we consider the simple case of one station (M = 1) in eq.(69). The

probability density function for N variables d; can be written as

o " -
T (2r )Nfz exp z O*(dy "—Sk)(d{ — 31) (71)

kil

where @ is an element of N * N matrix ®, which is the inverse matrix of the

covariance matrix p whose element is

o = Bl s )(d = sl G2
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We assume that the signal s; has the known shape fi(k = 1,2,...., N) but that

its amplitude contains an unknown factor c :

sk = cfi (73)

We want the maximum-likelihood estimate of c. Using the matrix notation for
brevity, the exponent in eq.(71) can be written as —(d — c¢f)T®(d — ¢f) where
d and f are column vectors with the components dy and f;, respectively, and T

indicates taking the transpose of the vector.
1 1
— 5(d —ef)TB(d - cf) = — [d7®d — cd™®f - cfT®d + TRf|. (74)
Taking the derivative with respect to ¢ , setting the result equal to zero, and ob-

serving d7®f = f7® d because ® is symmetric, we find the maximum likelihood

estimate to be

d7df
o 13
g i
The corresponding estimate of s = cf is
e dTef
S:Cf:wf’f'q;ff’ (76)

which is equal to ¢f when d is equal to ¢f . In other words, it does not distort the

signal. We can find the variance of the estimate ¢ . Rewriting .
é—c=(d-cf)TRf(fT®F)?, | (77)
and noting that
E[(d—cf)(d—cf)']=p and p= <I'“_‘, (78)
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we obtain

E[(é - o)l = E[(¢ - o)T(¢ - o))
= (T2 £)'7® E [(d - cf)(d - cf)T] @ (£7®¢)
=(Tef) @ pof (TR )"

=(fTe ) T f(fT® )"
={fTa )}
Lk Y (79)

Summarizing the above result, the maximum likelihood estimate of the signal
amplitude c is given by (d7® f)(f7® f)~!, and the variance of the estimate is equal
to (fTp=1£)~!, where p is the covariance matrix of noise and ® = g

The maximum-liklihood estimate of the power spectrum used by Capon(1969)
is the variance of the signal estimate when the signal shape is the unit sinusoidal
oscillation: f; = exp[iw(k — I)At], where w is the frequency at which the power

spectrum is to be estimated. The power spectral estimate is

1 i 1

—= (80)
e i i@“ explw(k — 1)At]
k=11=1

*

where a conjugate operation * is included because f is complex. Equation (80) is
a'reasonable estimate of the power spectrum, because it is the variance of the best
~ estimate of a virtual sinusoid with a given frequency. Since the variance is caused
by the noise power in the vicinity of that frequency, this must give a high resolution
estimate of the noise power spectrum at that frequency.

Capon’s estimate of the frequency-wavenumber spectrum is given by a natural

24



extension of eq.(80) to the two-dimensional case:

N N =t
P(kg, ky,w) = {Z; 2. ¢ij(w) explikz(z; — z;) + iky(y: — yj)]} s 8L}

where ¢;;(w) is an element of the matrix ¢(w); (z;,y;) indicates the i-th seismometer
location. ¢(w) is the inverse matrix of the Fourier transform of the covariance matrix

Priss given by

Prii = Elnginy. ], : (82)

where n,; is the noise at the i-th station.
&
We have extensively used this method? in estimating underground structures
at many sites in the Tokachi Basin in eastern Hokkaido, Japan, using long-period
microtremors. Depths of underground structures .estimated reach to 2,000 - 3,0.00
m in the period range of 1 to 3.5 s of the fundamental-mode Rayleigh waves in
microtremors. Examples of the results obtained will be presented in the lecture, in

which some fundamental research on the method also will be given.

“Recently, Miyakoshi et al.(1996) have pointed out through a numerical simulation test for the
Capon’s estimate of the frequency-wavenumber spectrum that the estimate has a disadvantage
that inaccurate phase velocities may be given, since the degeneration of the plural maxima in the
frequency-wavenumber spectra sometimes takes place at lower frequencies. This may be intrinsic

to the spatial extent of array employed where ‘a small number of seismometers are used.
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FIGURE 1

Examples of the weight function W(k_,k,) for two different array configurations;
configuration | (array diameter 22 km) is on the right; configuration I (diameter 30 km),
on the left. [From LaCoss et al., 1969.]

FIGURE 2

Wavenumber spectra of microseisms for five different [requencies observed at the Montana
LASA. [From LaCross et al, 1969.]



