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Abstract

The existence of prograde particle motion for fundamental-mode Rayleigh waves is studied systematically in models of
increasing complexity by using an exact expression of the ellipticity. This expression, together with the secular equation for
the phase velocity, are useful to find the most relevant parameters for prograde particle motion, namely Poisson’s ratio in
the layer and the shear-wave velocity contrast between the layer and the half-space. The density contrast between layer and
half-space, and up to a certain degree Poisson’s ratio in the half-space, are usually less important. The domain of existence
of prograde Rayleigh-particle motion is specified for typical combinations of parameters.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

It is well established in textbooks that Rayleigh waves propagating over the surface of a homogeneous elas-
tic half-space feature retrograde particle motion (see e.g. Achenbach [1] and Kaufman and Levshin [2]). How-
ever, in the inhomogeneous half-space retrograde or prograde motion is possible depending on the frequency
range. Early papers devoted to this subject include Giese [3] and Kisslinger [4]. Both found evidence of pro-
grade Rayleigh motion in soils. Giese found prograde and retrograde wave groups in a model consisting of a
layer on a rigid half-space. He calculated Poisson’s ratio in the layer from the critical frequency where particle
motion changes from prograde to retrograde. Mooney and Bolt [5] presented an extensive numerical study
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about dispersion of the first three Rayleigh modes for a single surface layer. They also mentioned the change
of particle motion under certain circumstances. Stephenson [6] discussed the restrictions on the emergence of
prograde Rayleigh-wave particle motion in a soft-soil layer. Tanimoto and Rivera [7] provide the eigenfunc-
tions of Rayleigh waves and their ratios numerically for a layer over a half-space. They found that Rayleigh-
wave particle motion can become prograde near the surface when the structure contains a low-velocity sedi-
mentary layer. Prograde Rayleigh-wave motion in a layered half-space was theoretically obtained by Wuttke
[8]. Prograde Rayleigh waves were observed in the valley of Mexico by Gomez-Bernal [9], Lomnitz and Meas
[10], and Stephenson et al. [11]. A theoretical derivation was provided by Malischewsky et al. [12].

For certain configurations of material parameters a pure modal analysis may become difficult or impossible
for the practical process of extracting and identifying modes from real wave records (see e.g. Levshin and Pan-
za [13]). This statement does not exclude the principal theoretical possibility. It happens especially when
energy is transmitted through internal waveguides. In these cases, the dispersion curve, extracted from exper-
imental data, is composed by parts of several different modes with the consequence that the concept of an indi-
vidual mode loses its sense for practical purposes. The problem is closely related to the osculation of
dispersion curves (see e.g. Sezawa and Kanai [14] and Forbriger [15]). On the other hand, the study of general
properties of individual modes is of fundamental interest, as it is not always easy to know in advance when the
modal theory will fail to apply.

This paper is organized as follows. We discuss the sense of particle motion in structural models of increas-
ing complexity beginning with the homogeneous half-space, and continuing with an impedance surface, a layer
with fixed bottom, and a layer over a half-space. The latter model involves some considerable complexities,
and we have to confine our treatment to several special cases.

2. The homogeneous half-space

This case does not offer major difficulties and provides an opportunity of introducing some nomenclature,
definitions and formulas for convenience. In most cases the terminology is the same of Malischewsky and
Scherbaum [16]. Differences in notation will be noted. Consider plane harmonic Rayleigh waves with angular
frequency w, wave number k, and phase velocity ¢ = w/k. The isotropic medium is characterized by Lamé
parameters p, A and density p, whence we may obtain the velocities of longitudinal waves o and of transverse
or shear waves f. The squared ratio of these velocities, which is a function of Poisson’s ratio v, is denoted by y:

B\ 1-2v
) = — = = 1
/ (oc 2(1 —v) (1)
Let P, Q, p, g be defined as follows:
P:kz_kiv Q:kZ_ki’v p:\/ﬁa q:\/w7 (2)

where k, and kj are the wave numbers of longitudinal and transversal waves. A Cartesian coordinate system is
assumed, where the x; axis points into the direction of propagation while the x5 axis is directed into the half-
space. The horizontal and vertical displacement components of Rayleigh waves Uj(x3) and Us(x3) are the
eigenfunctions, defined in the general manner as in Eq. (7) of Malischewsky and Scherbaum [16]. The horizon-
tal component is real and the vertical component is purely imaginary. These definitions follow from the equa-
tions of motion and are valid in layers with finite thickness. In order to be valid for the half-space problem as
well they must be specified in a straightforward manner as presented in [16]. It is well-known that the ellipticity
y for the stress-free surface (x3 = 0) is then

Ui(0) 2/1-¢/F 3)

PEI00) T 2= g

where 1 is the imaginary unit. By using the simplified representation of the Rayleigh-wave velocity as a func-
tion of Poisson’s ratio v by Malischewsky [17] we obtain the ellipticity y as a function of v in the form:
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with the abbreviations

r=0v) =

g(v) =17+ 3\/33 — 24y3 —|—%\72 — 93y _%\7’

2(1—3v

)_ e/g3<v>] and (5)
, (6)

where the main values of the cubic roots should be used.

This ellipticity y(v) is a positive function for —1 < v < 0.5 as a result of retrograde particle motion (see Mal-
ischewsky et al. [12]). The change of sign of y in more complex structural models is precisely the cause of the
change of sense of particle motion, as will be discussed below.

v=1-

3. The impedance surface

The impedance surface is a low-frequency approximation to the “layer over a half-space” model after Tier-
sten (see Malischewsky and Scherbaum [16]). In this approach, the approximate equations of low frequency
extension and flexure of thin plates are used in order to describe the influence of a thin layer over a half-space
by replacing the stress-free condition on the surface by an impedance-like boundary condition on top of the
half-space. An expression for the ellipticity y was presented by Malischewsky and Scherbaum [16, Eq. (19)].
Fig. 3 in Ref. [16] contains an error which is corrected here. Consider a non-dimensional frequency f, defined
as

f=d/i,, (7)

where d is the thickness of the layer and 4, is the wavelength of shear waves in the layer. We recompute y for
the impedance surface as a function of f with the parameters of Model 1 (see Table 1). The result is presented
in Fig. 1.

The ellipticity in the homogeneous half-space with stress-free boundary conditions is included as a dashed
line for comparison. Notice that the dependence of ¥ on f is weak, with a maximum at approximately f = 1. It
can be shown that y has no singularity of the type that is common for many parameter combinations of a layer
over half-space model (see Fig. 5 in [16]), and that y does not vanish. Thus the particle motion does not change
sense. It becomes clear from (3) that y is always positive for zero frequency, i. e. the particle motion is retro-
grade for all models and frequencies.

4. Layer with fixed bottom

We are using the same eigenfunctions as in Eq. (7) of Malischewsky and Scherbaum [16], with a stress-free
surface at x3 = 0 and a fixed bottom at x; = d:

Ui(d) = Us(d) = 0. (8)
Table 1
Model parameters for the models under consideration

Model 1 Model 2 Model 3
ry=Pi/Ba 0.1667 0.2473 0.2473
ra= p1/p2 0.7407 0.7391 0.7391
vy 0.4375 0.5 0.4576
V2 0.2506 0.5 0.3449
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Fig. 1. The ellipticity for Rayleigh waves on an impedance surface (solid) and on a homogeneous half-space (dashed) in dependence on
frequency.

Omitting some algebra we find for these boundary conditions the following secular determinant of the
boundary-value problem:

- 2 - — 2 _
Ay = A4y + Bysinh <2n£g°‘> sinh <_négﬁ) + Cycosh <2n£g1> cosh (_Tcég,;) 9)

where the abbreviations are

C=c/B, g =plk=\/1-7C, gy=q/k=V1-C (10)

and the constants A4, By, C, are given by
Ay = —4y(C* - 2)g,g,
By = 9[8 —4C*(2 +7y) + C*(1 + 4y)], (11)
Co = —72,84(8 — 4C7 4+ CY).

C is obtained by letting 4, vanish. From (1) and (9)(11) we find for this model that the non-dimensional
“phase velocity” C is a function of f and v but not of the density:

C=C(f,v). (12)
The corresponding ellipticity y, may be determined as in Malischewsky and Scherbaum [16]. It is given by
(2 — C?)cosh (%) — 2cosh (27(%”)

- i ]
2,8y sinh (22) + (C? - 2) sinh ()

(13)

r=VvI1-

which yields
xr :X/‘(J?a")- (14)

A 2D graph of yas a function of f and v (Fig. 2) displays the sharp partition into two regions, where 7> 0
corresponds to retrograde particle motion (dark shading) and y,<0 to prograde particle motion (light
shading).

The domain of prograde motion is bounded on the left by a critical point P; with coordinates (0.25, 0.2026)
and at the top of the figure by point P3 with coordinates (0.5126, 0.5). Unfortunately, there is no algebraic
representation of these coordinates. They follow from the solution of the system of Eq. (17) when y =0. A
further critical point P, with coordinates (v/3/4,0.25) is located near the center of the graph. A more detailed
explanation is beyond the treatment in this paper, as it requires a careful analytical treatment of the eigenvalue
problem. However, let us summarize some main results of such an analysis without proof.

The critical value v = 0.2026 follows from the equation
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Fig. 2. The ellipticity for the model with fixed bottom in dependence on frequency and Poisson’s ratio: retrograde motion (dark gray) and
prograde motion (light gray).

1 —27sin (g\/y) =0. (15)

No prograde motion is observed for v <0.2026. The same critical value is observed in the method used by
Giese [3] for the determination of Poisson’s ratio from frequency when the sense of motion changes. The
curves and PP, and P,P; in Fig. 2 are obtained from the numerical solutions of

=5 srosh (Wg TEkeh),
S (16)
/= Tcg,gam“h (2 = C? \/y(;(;_c c);)rfrj 1/4> ’
and
o
T
/= 27; arsinh <2 _2 c? \/V(yl(l_ —C 2C);)Lf 21/4> ’

where arsinh and arcosh are the respective inverse hyperbolic functions.

The critical point P; is closely connected with a so-called osculation point of dispersion curves for the fun-
damental and first higher modes, respectively. At this point, f = v/3/4,C = 2,v = 0.25, and %7 becomes inde-
terminate as

xfzg for / =V/3/4 and v = 0.25 (18)
with right-hand and left-hand limits
limy, =04089 and limy, = -7.3371. (19)
J—/3/4+0 F—/3/4-0

This remarkable jump had been noticed, among others, by Giese [3]. It is an example of the problems with
mode theory, as encountered under certain circumstances mentioned in the introduction. A discussion and
explanation of this behaviour is definitely beyond the scope of this article. The crucial point to avoid such dif-
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ficulties (like this jump) is to classify the eigenfunctions or modes in another manner as pointed out already by
Okal [18] in the context of the Earth’s spheroidal modes. We have only considered the fundamental mode
which is defined in the standard manner as the wave with the lowest phase velocity. If instead the branches
are defined by continuity of de/df, allowing them to cross each other, then the discontinuity disappears (both
“new” branches present continuous phase and group velocity and ellipticity at P,). Similar points appear for
higher modes at higher frequencies. From mathematical point of view that is a degeneration of eigenvalues,
which we observe for the fundamental mode, however, for v = 0.25 only.

We note that for frequencies below f = 0.25 there is no undamped surface-wave motion. This is a special
feature of the model with fixed bottom. Further, for high frequencies there can be only retrograde motion
because of the skin effect in surface waves: high-frequency waves are concentrated within a thin layer near
the surface. For negative Poisson ratios (auxetic materials), which are not included in Fig. 2, we observe
always retrograde motion.

5. A layer over a half-space

Let us denote the parameters of the layer with index 1 and of half-space with index 2. We omit the explicit
derivation of the secular determinant 4, as it can be found in different forms in textbooks (e.g., Ben-Menahem
and Singh [19]). We consider the arguments of this determinant:

Al:Al(rsardavlav%Caj.)a (20)
where we introduce the ratios

re = PB1/Br ra = p1/P2s (21)

and C defined for this model as ¢/f; and f as d/2g,.

Now the vanishing of 4, yields C. Note that for constant r,, C as a function of f does not depend on ;. It is
well-known that the influence on C of ry and v; is much greater than that of r; and v,. Malischewsky and
Scherbaum [16] presented an explicit expression for the H/V ratio of a layer over a half-space. This is a con-
venient starting-point for the investigation of the sense of particle motion. For convenience we reproduce this
formula by adopting the following definitions (Malischewsky and Scherbaum [16)):

P = \/ kz_kila P = \/ kz_kizv q, = \/kz_kfflv q, = kz_kf}zv

g1 = poq kK (mamy + 2 \myms),
& = —2k2p1q1 (mimy — 2m3p,q,3p),

g3 = K (myms — 2f 1p2g2m3), -
g4 = 2k2p1q1(mmlz — 2m3p,q,041),
g5 = —2P1Q1k2(flm% + P2grmadu),
86 = 2K°pyq;(fimmy — msdp),
where
ou = Plﬁ% _pzﬁgﬂ op=py—p, and
my = 2](28/1 + COZPz,
my = 2k*du — w’dp,
2 1% 14 (23)

m3 = 2]{28# - wzpla
my = =478+ 207 (p, — p2f3/ BY),
ms = 4k* S+ *8p/ B + 260 [p,(B3/ B + 1) — 2py]-

A quantity y is defined as follows:
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y= g cosh(dq,) + g, sinh(dp,) + g; sinh(dq,)
g4 cosh(dp,) + gscosh(dq,) + gq sinh(dg,)’

and the ratio y = H/V may be written as

2
. (1 _2c_ﬂ2> 1 1 + ytanh(dp,) (25)
1

X X .
JI- /a2 v+ tanh(dp,)

It can be shown that y is a function of the following arguments:

X:X(rs,rdyvl,VZ,f)' (26)

We note that §; does not enter separately into this analytical representation of the ellipticity with the conse-
quence that the absolute value of the shear-wave velocity in the layer does not influence the sense of the par-
ticle motion. The domain of existence of prograde motion for this model is very involved to investigate in a
general way. We must be satisfied with investigating the role of the two leading parameters r; and v;. It can be
demonstrated numerically that the influence of r; and v, on the ellipticity is less relevant in many cases. On the
other hand, we have also been able to ascertain an interesting influence of v, on the value of the ellipticity in
certain cases.

For simplicity, we begin with an incompressible structural model (see Model 2 in Table 1). We show the
influence of r, and f on the domain of prograde motion in Fig. 3. The region of prograde Rayleigh motion
(7 <0) is shown in red. The fine structure of positive H/V-values in the domain of retrograde motion is also
shown in shades of blue, with the lighter shades corresponding to the higher values.

Because of the skin effect of surface waves and recalling that the Rayleigh motion is retrograde in the homo-
geneous half-space, prograde motion should be expected only in a certain range of frequencies /. From Fig. 3
this is indeed the case. For very low 7, (i. e. for a high shear-wave contrast), we observe prograde motion
approximately in the interval 0.25 < f < 0.5, which falls between the so-called fundamental frequency of
the site B, /4d and the double site frequency S,/2d. Malischewsky et al. [12] point out that the vertical and
horizontal eigenfunctions change signs at these frequencies: this is responsible for the occurrence of prograde
motion. The fundamental site frequency is important in seismic hazard assessment as it is connected with the
shear-wave resonance in the layer.

The exact upper limit of f for prograde motion is 0.5126 which corresponds to the critical point P; from
Section 4. The ratio of shear-wave velocities r, was caused to vary between 0.01 and 0.9. For r,> 0.2 the fre-
quency range of prograde motion becomes narrower and finally it vanishes for r, greater than about 0.5. As
pointed out by Malischewsky et al. [12], the behaviour of the function y can be tricky; thus prograde motion
can be challenging to calculate numerically in certain ranges. The domain of prograde motion may be
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Fig. 3. 2D graph of the domain of prograde motion (red) as a function of f and r, for the incompressible Model 2. Retrograde motion in
shades of blue depending on the values of y. The value ry = 0 corresponds to the fixed-bottom model (FBM).
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Fig. 4. 2D graph of the range of prograde motion (/ight grey) as a function of f and r, for different values of v, (contours) and for r;and v,
of Model 3. The white horizontal line corresponds to r; = 0.2473 in Model 3 and r; = 0 corresponds to FBM.

bounded either by two zeros in y, by two poles, or more commonly by a pole and a zero. In Fig. 3, there is a
remarkable point on the boundary of the red region, at f ~ 0.377 and r; ~ 0.393. It can be shown that for
ry < 0.393 the prograde domain is bounded on the left by a pole, but for r, > 0.393 it is bounded by a zero.

Model 3 from Table 1 may be regarded as an example of the influence of the layer’s Poisson ratio v; on the
sense of particle motion. In Fig. 4, the parameters were chosen to include the simplified configuration of the
Kiryat Shmona test site in the Dead Sea transform fault region, Israel [20], which is of interest in seismic haz-
ard analysis. The parameters of the test site are f; = 0.45 km/s, > = 1.82 km/s, p; = 1.7 g/em?, p, =2.3 g/
cm’, d = 0.042 km.

Fig. 4 is organized as in Fig. 3. The domain of prograde motion is light grey and that of retrograde motion
is dark grey. The domain of prograde motion is bounded by the contour y =0 for v; =0.499. Thus the
domain of prograde motion is maximal for an incompressible layer. Contours of y =0 for v; =0.21, 0.25,
0.27, 0.3, 0.4, 0.458 are included to show that the domain of prograde motion becomes smaller for low Poisson
ratios and disappears for v; < 0.2026. This value matches the critical point P, from Section 4. The contour for
vi = 0.458 is relevant for the Kyriat Shmona test site. It is located between 0.4 and 0.499. The corresponding
shear-wave ratio r, = 0.2473 for this model is indicated by the horizontal white line. Thus the domain of pro-
grade motion is practically within the maximal frequency range 0.25 < f < 0.5126.

Note the peculiar shape of the contours between 0.27 and 0.3. The steep slopes at r, = 0.22 for v; =~ 0.27 and
ry~ 0.3 for v; =~ 0.3 are related with osculation of dispersion curves, a phenomenon which occurs at these
“edge-points”. A more careful numerical analysis shows that for fixed v, and r, these steep contours occur
for 0.25 < vy < v, where v, is a critical Poisson’s ratio. For our parameter set v, is about 0.34.

The steep contours have a remarkable property. The domain of prograde motion is limited by two poles in
y when ry is situated between the edge and the top of the corresponding contour. Only for these situations two
poles of y can occur. Thus there is a close connection between the H/V- theory and osculation.

Figs. 3 and 4 were calculated by using the ContourPlot command of MATHEMATICA® version 4.0.

6. Conclusions

We have shown that Tiersten’s impedance surface cannot support prograde Rayleigh motion. However,
prograde motion is observed for a layer with fixed bottom and a layer over a half-space within some domains
of frequency, Poisson’s ratio, and shear-wave contrast. For a layer with a fixed bottom, prograde particle
motion is present in the frequency range of 0.25 < f < 0.5126 if Poisson’s ratio is greater than about
0.2026. It is concluded that Giese’s method is applicable only for Poisson’s ratios above 0.2026. The general
validity of a lower limit v; = 0.2026 of Poisson’s ratio and of an upper frequency limit / = 0.5126 for prograde
Rayleigh motion should not be underestimated. These limits are valid for all models of the layer over half-
space type, not only for a layer with fixed bottom.
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The prograde particle motion domain for a layer over a half-space depends strongly on Poisson’s ratio v; in
the layer and on the shear-wave contrast r,. However, the absolute value of the shear-wave velocity in the layer
is not relevant for the existence or non-existence of prograde Rayleigh particle motion. The influence of the
density contrast r, and in many cases also of Poisson’s ratio v, in the half-space is less relevant; however espe-
cially the latter influence should be examined in detail in future. We have been able to demonstrate the influ-
ence of the osculation of dispersion curves on the behaviour of the ellipticity: this too should be studied more
thoroughly.

We have discussed some fundamental properties of Rayleigh waves. The prograde or retrograde character
of Rayleigh particle motion should yield useful additional constraints on uniqueness of the inversion of dis-
persion and ellipticity measurements of Rayleigh waves. These considerations should turn out to have a con-
siderable impact on the characterization of site response in seismic hazard assessment.
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