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Abstract8

The ellipticity of Rayleigh surface waves, which is an important parameter characterizing the propagation medium, is9

studied for several models with increasing complexity. While the main focus lies on theory, practical implications of the10

use of the horizontal to vertical component ratio (H/V-ratio) to study the subsurface structure are considered as well. Love’s11

approximation of the ellipticity for an incompressible layer over an incompressible half-space is critically discussed especially12

concerning its applicability for different impedance contrasts. The main result is an analytically exact formula ofH/V for a13

2-layer model of compressible media, which is a generalization of Love’s formula. It turns out that for a limited range of14

models Love’s approximation can be used also in the general case.15

© 2003 Elsevier B.V. All rights reserved.16

1. Introduction17

Rayleigh waves propagating over the surface of homogeneous and inhomogeneous elastic half-spaces are a18

well-known and prominent feature of wave theory. They are vector waves, which are confined to the region near19

the surface, and are polarized in the saggital plane. That means, the components of displacement are a horizontal20

component, which is parallel to the direction of propagation, and a vertical component directed into the half-space.21

The dimensionless ratio of these componentsH/V at the surface, the so-called ellipticity, is an important parameter22

which reflects fundamental properties of the elastic material.23

Indirectly, the study of Rayleigh wave ellipticities has recently gained considerable popularity in the context of24

studying ambient seismic vibrations for seismic hazard analysis. Since ambient vibrations as generated by wind,25

traffic, etc. consist predominantly of surface waves[1–3], H/V power spectral ratios of ambient vibrations provide a26

statistical means to look at Rayleigh wave ellipticities. As a consequence,H/V spectral ratios of ambient vibrations27

are increasingly used for the investigation of local site amplification during strong earthquakes[4,5]. Due to the28

strong impedance contrast in the shallow subsurface structure, local site effects are often fairly well predicted by29

simple models[6,7]. Therefore, a thorough theoretical understanding of even a single layer over half-space is not30

only of theoretical but also of considerable practical interest. Adding to this argument is the fact that an accepted31

theoretical model for the interpretation ofH/V measurements from ambient vibrations, still has to be developed.32

∗ Corresponding author. Tel.:+49-3641948663; fax:+49-3641948662.
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Furthermore, theH/V-ratio has recently also found practical applications in global seismology[8,9] proposed to33

use it in non-destructive testing with acoustic surface waves.34

It is well known but still remarkable that for an homogeneous half-spaceH/V can be expressed by a very35

simple formula. Adding only a single layer, immediately complicates the situation considerably. To our knowl-36

edge, only very few studies deal with the attempt to derive formulas for this case, among them the famous thesis37

of Love [10]. His derivation deals with an incompressible layer over an incompressible half-space for which38

he presented an extremely simple approximation forH/V. The range of application of this formula, however,39

remained unclear. In order to better understand the properties ofH/V in a simple, but still practically relevant40

situation, we have generalized Love’s argument for compressible media and present it in this paper in a mod-41

ern notation. The result is an exact explicit formula ofH/V for the general case of one layer over a half-space.42

It turns out that Love’s approximation, originally derived for incompressible media, may be applied for com-43

pressible media as well but is valid only in a limited range of cases. The paper is structured such that the entity44

H/V is discussed for models of increasing complexity: homogeneous half-space, impedance surface, layer over45

half-space.46

2. The homogeneous half-space47

Although the following calculations are straightforward and well documented in the textbook literature (e.g.48

[11]), we felt it to be useful for the understanding of the more complicated models to briefly present the gen-49

eral ideas to expressH/V for this situation as well. The 2D-Rayleigh wave motion is described in a cartesian50

coordinate system with its origin located on the surface of the half-space. Thex1-axis points into the direc-51

tion of propagation while thex3-axis is directed into the half-space. Our starting point is the Navier52

equation:53

µ
∂2ui

∂xj∂xj
+ (λ+ µ)

∂2uj

∂xi∂xj
= ρüi, i = 1,2,3, (1)

54

with the components of the displacement vector denoted byui, λ and µ the Lamé’s parameters, andρ the55

density. Einstein’s summation condition is understood and the time derivative is denoted by a dot. The depth-56

dependent Rayleigh eigenfunctions areUi = Ui(x3) (i = 1,3). The assumption of harmonic plane57

waves:58

ui = Ui(x3)ei(kx1−ωt), i = 1,3, (2)59

with wave numberk, angular frequencyω, and timet leads to the following coupled system of differential equations60

of second order:61

γU ′′
1(x3)+ ik(1 − γ)U ′

3(x3)− PU1(x3) = 0, U ′′
3(x3)+ ik(1 − γ)U ′

1(x3)− γQU3(x3) = 0. (3)62

The derivatives with respect tox3 are labelled by dashes. The imaginary unit is denoted by i,γ is the squared ratio63

of shear-wave velocityβ to longitudinal-wave velocityα:64

γ = β2

α2
= µ

λ+ 2µ
(4)

65

andP andQ are defined by66

P = k2 − k2
α, Q = k2 − k2

β, (5)67

wherekα andkβ are the wave numbers of longitudinal and transversal waves, respectively. By introducing the square68

roots ofP andQ:69

p =
√
P, q =

√
Q (6)70

WAMOT 1184 1–11



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

P.G. Malischewsky, F. Scherbaum / Wave Motion xxx (2004) xxx–xxx 3

and the integration constantsC1, C2, C3, C4, the general solution of (3) can be written as7172

U1(x3) = C1 e−px3 + C2 epx3 + C3 e−qx3 + C4 eqx3,73

U3(x3) = i

[
p

k
C1 e−px3 − p

k
C2 epx3 + k

q
C3 e−qx3 − k

q
C4 eqx3

]
. (7)

74

For the half-spaceC2 = C4 ≡ 0 must hold. The remaining constantsC1 andC3 are usually determined from the75

condition of a stress-free surface:76

Si3 = 0, i = 1,3 forx3 = 0, (8)77

whereSi3(x3) are the correspondingx3-dependent stress tensor components defined by78

S13(x3) = ρβ2[U ′
1(x3)+ ikU3(x3)], S33(x3) = ρα2[U ′

3(x3)+ ik(1 − 2γ)U1(x3)]. (9)79

Setting the determinant of the homogeneous system (8) forC1 andC3 to zero results in Rayleigh’s equation with80

the phase velocityc = ω/k andξ = c/β:81

4pq − k2
(

2 − c2

β2

)2

= 0 or F(ξ) = 4
√

1 − γξ2
√

1 − ξ2 − (2 − ξ2) = 0 (10)
82

and83

C3 = − 2pq

Q+ k2
C1. (11)

84

The simple formula forH/V mentioned above is then (see e.g.[11]):85

χ =
∣∣∣∣HV

∣∣∣∣ =
∣∣∣∣U1(0)

U3(0)

∣∣∣∣ =
√
q

p
= 2

√
1 − c2/β2

2 − c2/β2
. (12)

86

The ellipticityχ depends only on Poisson’s ratioν. In terms of the phase velocityc, it is expressed here for the first87

time analytically by applying the formula of Malischewsky[12]. With the auxiliary functionsh1, h2, h3, h4, defined88

by8990

h1(ν) =
√

5 − 21ν + 16ν2 − 32ν3

(ν − 1)3
, h2(ν) = 11− 56ν

ν − 1
, h3(ν) = 3

√
4

3
√

3
√

3h1(ν)+ h2(ν),
91

h4(ν) = 3
√

4 sign(2 − 5ν)
3
√

[−3
√

3h1(ν)+ h2(ν)] sign(2 − 5ν), (13)92

we obtain93

χ = 2
√

3

√
h3(ν)+ h4(ν)− 5

h3(ν)+ h4(ν)− 2
. (14)

94

The symbol sign(x) stands for the signum function. It is assumed that the cubic root is located in the first and fourth95

quadrants, depending on the sign of the imaginary part in the argument of the root.Fig. 1 shows the well-known96

behaviour ofχ in dependence onν for all possible values of Poisson’s ratio. It should be noted that, contrary to the97

models to be discussed in the following, there is no dependence on frequency.98

3. Impedance surface99

In a low frequency approximation, Tiersten[13] introduced special boundary conditions on the surface in order100

to simulate the elastic behaviour of a thin layer over an half-space.Fig. 2 shows the assumed configuration. Note101

that in this case the origin of the coordinate system is located on the boundary between layer and half-space.102

WAMOT 1184 1–11
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Fig. 1. The ellipticityχ for the homogeneous half-space in dependence on Poisson’s ratioν.

The elastic parameters in the layer are indexed as 1 and unindexed for the half-space, respectively. The thickness103

of the layer isd. For Rayleigh-wave motion the stress-free conditions (8) are replaced by Tiersten’s boundary104

conditions:105

S13 + ε1U1 = 0, S33 + ε3U3 = 0 forx3 = 0, (15)106

with107

ε1 = dρ1ω
2
[
1 − 4(µ1 + λ1)

2µ1 + λ1

β1
2

c2

]
and ε3 = dρ1ω

2. (16)
108

Recently Bövik[14] succeeded in improving these boundary conditions by introducing derivatives of stress com-109

ponents on the right sides of (15). They are then correct in an asymptotic sense up to the order O(d) (so-called110

O(d)—boundary conditions). A further discussion of the implications of both kinds of special boundary conditions111

is beyond the scope of this article. Here we calculate the ellipticity of Rayleigh waves under the conditions (15).112

The general solution is the same as in (7). But in applying (15), we realize that Rayleigh’s equation (10) has to be113

replaced by the frequency-dependent equation (compare with[15]):114

ω2F(ξ)− ωβ

µ

(
ε3

√
1 − γξ2 + ε1

√
1 − ξ2

)
ξ3 + ε1ε3

µ2
β2ξ2

(
1 −

√
1 − γξ2

√
1 − ξ2

)
= 0 (17)

115

Fig. 2. Layer with thicknessd over a half-space.
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Table 1
Parameters for model 1 (left model column) and model 2 (right model column)

Parameters Model 1 Model 2

Layer
α1 (km/s) 1.5000 3.0000
β1 (km/s) 0.5000 1.0000
ρ1 (g/cm3) 2.0000 2.0000
ν1 0.4375 0.4375
d (km) 0.3000 0.3000

Half-space
α2 (km/s) 5.2000 5.2000
β2 (km/s) 3.0000 3.0000
ρ2 (g/cm3) 2.7000 2.7000
ν2 0.2506 0.2506

and (11) becomes116

C3 = − q(ε1p− 2ρβ2P)

p[ε1q− ρβ2(k2 +Q)]
C1. (18)

117

After some algebra, the ellipticity of Rayleigh waves for the impedance surface can be written as118

χ = kρβ2[pk2 + q(pq − 2P)]

ε1(qP − pk2)+ ρβ2k2
βP

. (19)
119

Expression (19) for the ellipticity for model 1 (seeTable 1) is presented inFig. 3as a function of the dimensionless120

parameterd/λβ1 with the wavelengthλβ1 of the shear waves in the layer. Here, the ellipticity for the homogeneous121
half-space with stress-free boundary conditions is additionally included as a dashed line. It becomes obvious122

that the introduction of the simple impedance-surface model already yields a strong frequency dependence of123

the ellipticity. However, the peak appears at lower frequencies with respect tod/λβ1 than is often observed for124
realistic sedimentary site models where the peak is close tod/λβ1 = 0.25 (e.g.[7]; see also discussion related to125
Fig. 5).126

Fig. 3. Ellipticity χ of the impedance surface (full) and the half-space (dashed) in dependence ond/λβ1.

WAMOT 1184 1–11
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4. Layer over half-space127

In the following, we consider the most interesting case of a not necessarily thin layer over an half-space. The128

geometry is as inFig. 2and we use label 1 for the parameters of the layer and label 2 for the half-space, respectively.129

Love [10] investigated this problem under the simplifying assumption that both media are incompressible. We do130

not reproduce Love’s original derivation in detail here, but in the course of its generalization for compressible media131

we follow his argumentation by and large. Since Love’s approach is not very well known, it is worth to make a few132

remarks about the incompressible case, though. In this case, Lamé’s parameterλ and the velocity of longitudinal133

wavesα are infinite. In formulating the equation of motion it has to be taken into account that the product:134

λθ = λui,i = Π, (20)135

whereθ is the vanishing volume strain, adopts a finite valueΠ, which is interpreted by Love as a hydrostatic pressure.136

In addition, the stress componentS33 has to be modified in the same manner. The modified equation of motion can137

be solved by introducing scalar and vector potentials and prescribing a convenient value forΠ. On the other hand,138

the general solution (7) and the period equation (10), respectively, are also valid for the incompressible case when139

taking the limitα → ∞. The root of Rayleigh’s equation for incompressible media was presented analytically by140

Malischewsky[16]. We continue with the compressible case by writing the solutions for the layer and the half-space141

in a modified way in order to be more consistent with Love:142143

U
(1)
1 (x3) = i[−L1 cosh(p1x3)+ L2 sinh(p1x3)− L3 cosh(q1x3)+ L4 sinh(q1x3)],144

U
(1)
3 (x3) = p1

k
[−L1 sinh(p1x3)+ L2 cosh(p1x3)] + k

q1
[−L3 sinh(q1x3)+ L4 cosh(q1x3)],145

U
(2)
1 (x3) = −i[A1 e−p2x3 + A2 e−q2x3], U

(2)
3 (x3) = A1

p2

k
e−p2x3 + A2

k

q2
e−q2x3. (21)

146

HereL1, L2, L3, L4 are the integration constants for the layer andA1, A2 for the half-space, respectively. The relevant147

stress tensor components, belonging to these eigenfunctions, are denoted byS
(1)
13 (x3), S

(1)
33 (x3); S(2)13 (x3), S

(2)
33 (x3).148

In the following, because of the cumbersome algebra we are omitting some of the intermediate results in detail and149

focus on the essential steps and the final result. The stress-free conditions of the surface:150

S
(1)
13 (−d) = S

(1)
33 (−d) = 0 (22)151

together with the continuity relations on the boundary between the layer and the half-space:152

U
(1)
1 (0) = U

(2)
1 (0), U

(1)
3 (0) = U

(2)
3 (0), S

(1)
13 (0) = S

(2)
13 (0), S

(1)
33 (0) = S

(2)
33 (0) (23)153

yield an homogeneous system of six equations for the six constantsL1, L2, L3, L4, A1, A2. Its determinant has154

to be zero to yield the period or secular equation for this model. This equation determines the phase velocityc of155

Rayleigh waves in terms of the frequency or the wave length. There are several possibilities to write this complicated156

equation, which is a generalization of (10) and (17), in a convenient manner. We used the formula of Ben-Menahem157

and Singh[11], which is given here only symbolically as158

)(c, ω) = 0. (24)159

This equation depends on eight parameters: six elastic parameters, layer’s thickness and frequency. It is not surprising160

that it is impossible to discuss the roots of this equation in complete generality. Instead, we pick out some typical161

parameter combinations, which are important for practical reasons. The same is true for the correspondingH/V-ratio162

which will be discussed in the same manner.163

Let us assume that (24) is solved already. The crucial trick of Love in order to get a reasonable analytical expression164

for the ellipticity was to express the constantsL1 − L4 by A1 andA2 by applying the continuity relations (23):165

L1 = l11A1 + l12A2, L2 = l21A1 + l22A2, L3 = l31A1 + l32A2, L4 = l41A1 + l42A2, (25)166

WAMOT 1184 1–11
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where the coefficientsl11 − l42 are complicated functions of the eight parameters mentioned above. Furthermore,167

it is possible to introduce these equations into the stress-free conditions (22) which yields the two equations:168

c11A1 + c12A2 = 0, c21A1 + c22A2 = 0, (26)169

where the coefficientsc11 − c22 are again complicated functions of the eight parameters. In order to obtain the170

ellipticity χ it is necessary to form the expressionsU
(1)
1 (−d)andU(1)

3 (−d) from (21). By using (25), these expressions171

are linear functions of the half-space constantsA1 andA2. It turns out that they can be considerably simplified by172

introducing the relations (26). After this step the ellipticityχ is written as173

χ =
∣∣∣∣∣ U

(1)
1 (−d)

U
(1)
3 (−d)

∣∣∣∣∣ = d11A1 + d12A2

d21A1 + d22A2
(27)

174

with the new coefficientsd11 − d22. We are able to eliminateA2 by using, e.g. the firstEq. (26)and obtain175

χ = c12d11 − c11d12

c12d21 − c11d22
. (28)

176

Finally, it is convenient to write this expression as a product of three factorsf1, f2, f3:177

χ = f1f2f3, f1 = 1 − c2

2β1
2
, f2 = 1√

1 − c2/α2
1

, f3 = 1 + y tanh(dp1)

y + tanh(dp1)
. (29)

178

The entityy is a very complicated function of the eight parameters mentioned above and is presented inAppendix A.179

It should be noted that this final result can be obtained in a reasonable manner only by using symbolic calculation180

as inMATHEMATICA. It is valid also for all higher modes of Rayleigh waves, but in the following we will only181

discuss the fundamental mode. Love’s result for incompressible media was182

χinc = f1ỹ =
(

1 − c2

2β2
1

)
ỹ, (30)

183

whereỹ has a similar structure as our factorf3, but it is not identical. Love’s argumentation was thatỹ is a slowly184

varying function very near to 1 so that the simple formula:185

χinc ≈ 1 − c2

2β2
1

(31)
186

is a good approximation for |H/V|. However, it should be critically noted that by far not all parameter combinations187

yield such a simple result as we will see later.188

Next we will discuss the general case of compressible media. It can be easily realized from (29) that for the limit189

ω → ∞ f3 is unity andf1f2 adopts the half-space valueχ according to (12) with the parameters of the layer.190

Because of the complexity ofy, the value for the other limitω → 0 cannot be deduced analytically in a simple191

manner, but numerically it approximately adopts the half-space value (12) with the parameters of the half-space.192

For intermediateω-values between 0 and∞, the exact formula (29) has to be used. It turns out, however, that for193

certain parameter regions the productf2f3 is fairly close to 1, so that in these—and only in these—special cases194

Love’s formula (31) can be used for compressible media as well. To demonstrate this we use two different models195

with high{1} and low{2} shear wave contrasts, for which the parameters are given inTable 1.196

In Fig. 4, the productf2f3 is presented for both models as a function ofd/λβ1. We realize that only for model 1197

with the higher velocity contrast there is an intermediate region ofd/λβ1—values (between 0.25 and 0.45), where198

f2f3 approximates 1, while for both models the product goes to 1 ford/λβ1 > 0.55.199

In Fig. 5, we present a comparison between the exact ellipticity after (29) and the approximation (31) as a function200

of d/λβ1.201

WAMOT 1184 1–11
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Fig. 4. The productf2f3 for model 1 (full) and model 2 (dashed), respectively, in dependence ond/λβ1.

For higherd/λβ1-values (>0.5), the coincidence is very good for both models. However, the range below the202

root of χ, which is very important for practical applications, is much better approximated by Love’s formula for203

model 1 with the higher beta contrast than for model 2. It may be that this is a general tendency. The singularity of204

H/V requires special considerations. For practical applications it is often assumed that the corresponding frequency205

is related to the so-called “shear-wave resonance” in the layer (see e.g.[17–19]). That means it is assumed that206

the singularity occurs for such frequencies, where the layer’s thickness is one quarter of the wavelength of shear207

waves within the layer, i.e. by using our nomenclatured/λβ1 = 0.25. Until now, this statement was never proven208
analytically. We realize fromFig. 5, that it is very well fulfilled for model 1, but only approximately for model 2.209

Due to the enormous practical consequences, it seems worthwhile to investigate the validity of this statement for210

different shear-wave contrasts by using our exact formula (29).Fig. 6showsd/λβ1 for the peak value ofH/V versus211
the beta contrastβ2/β1. Here, the parameters of the half-space are not changed and Poisson’s ratio of the layer is212

assumed to be constant as inTable 1.213

It is remarkable that for beta contrasts greater than 3.5 the statement is very well fulfilled which is in conformity214

with practical experience from site conditions with high impedance contrast[20]. But it cannot be said, that the215

statement is generally true. Especially, the occurrence of a strange singularity forβ2/β1 ≈ 2.6 requires an additional216

investigation, which, however, is beyond the scope of the present paper.217

It is also interesting to study the influence of Poisson’s ratioν1 in the layer on the quality of the approximation.218

Fig. 7shows a 2D-density plot of the standard deviationδ in percent of Love’s approximation for two models with219

higher and lower shear-wave contrast, respectively, in dependence onν1 andd/λβ1.220

Fig. 5. Exact values ofχ for model 1 (left, full) and model 2 (right, full) and Love’s approximation for model 1 (left, dashed) and model 2 (right,
dashed) in dependence ond/λβ1.
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Fig. 6.d/λβ1 for the peak value ofH/V in dependence ofβ2/β1.

Fig. 7. Contour plot of the standard deviationδ in percent between exactχ and Love’s approximation for model 1 (left) and model 2 (right) in
dependence onν1 andd/λβ1. The white lines indicateν1 = 0.4375 as used in both models.

Lower values ofδ are indicated by red colours and higher values by blue ones. Theν1 used for both models is221

indicated by a white line. The complicated fine structure of the error function in these pictures demonstrates the222

complexity of the interrelation ofH/V with its approximation by Love. However, it becomes obvious, that there is223

a greater “red island” (for 0.35< ν1 < 0.45 and 0.25< d/λβ1 < 0.4) for model 1 with the higher beta contrast,224

where Love’s approximation works quite well. It can be seen, that we are at the border of this island with ourν1225

value. This red island is much smaller for model 2. In addition it comes at no surprise, that in conformity withFig. 5226

we are always in the red range for sufficiently highd/λβ1.227

5. Conclusions228

It is well known that the dependence of the ellipticity of Rayleigh waves on frequency is very sensitive on the229

material properties of the propagation medium. Its study is important from a theoretical as well as from a practical230

perspective. The exact analytic formula derived here is an effective tool for doing this. Already the comparatively231

simple model of 1 layer over half-space, which nevertheless is important for practical applications such as site232

effect studies, yields a great variety of appearances. Not all of them are understood analytically yet. We find that233

Love’s simple approximation can be profitably used for compressible media if the shear-wave contrast (i.e. the234

impedance contrast) between layer and half-space is high enough. For a completely unknown model, however, the235

exact formula has to be used. A natural next step would be the treatment of a model with a gradient. This, however,236

is beyond the scope of the present paper.237
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The coincidence between the shear-wave resonance frequency and the frequency of the peak of theH/V-ratio,238

often used in practical applications, could be confirmed numerically for models with high impedance contrast.239

However, its analytical relation still remains to be investigated further, which is the topic of ongoing work. The240

exact formula derived here could be a natural starting point among others.241

Appendix A. The auxiliary entity yyy242

By introducing the abbreviations243244

g1 = p2q1k
2(m2m4 + 2f1m1m3), g2 = −2k2p1q1(m1m2 − 2m3p2q2δµ),245

g3 = k2(m2m5 − 2f1p2q2m
2
3), g4 = 2k2p1q1(m1m2 − 2m3p2q2δµ),246

g5 = −2p1q1k
2(f1m

2
1 + p2q2m4δµ), g6 = 2k2p1q2(f1m1m3 −m5δµ)247

with248

δµ = µ1 − µ2, δρ = ρ1 − ρ2249

and250251

m1 = 2k2δµ+ ω2ρ2, m2 = 2k2δµ− ω2δρ, m3 = 2k2δµ− ω2ρ1,252

m4 = −4k2δµ+ 2ω2

(
ρ1 − ρ2

β2
2

β2
1

)
, m5 = 4k4δµ+ ω4δρ

β2
1

+ 2k2ω2

[
ρ2

(
β2

2

β2
1

+ 1

)
− 2ρ1

]
253

the entityy is obtained in the form:254

y = g1 cosh(dq1)+ g2 sinh(dp1)+ g3 sinh(dq1)

g4 cosh(dp1)+ g5 cosh(dq1)+ g6 sinh(dq1)
.

255
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