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Abstract

The ellipticity of Rayleigh surface waves, which is an important parameter characterizing the propagation medium, is
studied for several models with increasing complexity. While the main focus lies on theory, practical implications of the
use of the horizontal to vertical component ratiti\{-ratio) to study the subsurface structure are considered as well. Love’s
approximation of the ellipticity for an incompressible layer over an incompressible half-space is critically discussed especially
concerning its applicability for different impedance contrasts. The main result is an analytically exact foridiNafof a
2-layer model of compressible media, which is a generalization of Love’s formula. It turns out that for a limited range of
models Love’s approximation can be used also in the general case.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Rayleigh waves propagating over the surface of homogeneous and inhomogeneous elastic half-spaces are a
well-known and prominent feature of wave theory. They are vector waves, which are confined to the region near
the surface, and are polarized in the saggital plane. That means, the components of displacement are a horizontal
component, which is parallel to the direction of propagation, and a vertical component directed into the half-space.
The dimensionless ratio of these componéing at the surface, the so-called ellipticity, is an important parameter
which reflects fundamental properties of the elastic material.

Indirectly, the study of Rayleigh wave ellipticities has recently gained considerable popularity in the context of
studying ambient seismic vibrations for seismic hazard analysis. Since ambient vibrations as generated by wind,
traffic, etc. consist predominantly of surface walfes3], H/V power spectral ratios of ambient vibrations provide a
statistical means to look at Rayleigh wave ellipticities. As a consequeli¢espectral ratios of ambient vibrations
are increasingly used for the investigation of local site amplification during strong earthqddi{e®ue to the
strong impedance contrast in the shallow subsurface structure, local site effects are often fairly well predicted by
simple modelg6,7]. Therefore, a thorough theoretical understanding of even a single layer over half-space is not
only of theoretical but also of considerable practical interest. Adding to this argument is the fact that an accepted
theoretical model for the interpretation BfV measurements from ambient vibrations, still has to be developed.

* Corresponding author. Teh:49-3641948663; fax+49-3641948662.
E-mail addresses: mali@geo.uni-jena.de (P.G. Malischewsky), fs@geo.uni-potsdam.de (F. Scherbaum).
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Furthermore, théd/V-ratio has recently also found practical applications in global seismd&gy proposed to
use it in non-destructive testing with acoustic surface waves.

It is well known but still remarkable that for an homogeneous half-spétécan be expressed by a very
simple formula. Adding only a single layer, immediately complicates the situation considerably. To our knowl-
edge, only very few studies deal with the attempt to derive formulas for this case, among them the famous thesis
of Love [10]. His derivation deals with an incompressible layer over an incompressible half-space for which
he presented an extremely simple approximationHév. The range of application of this formula, however,
remained unclear. In order to better understand the propertieB\ofn a simple, but still practically relevant
situation, we have generalized Love's argument for compressible media and present it in this paper in a mod-
ern notation. The result is an exact explicit formulaHg¥ for the general case of one layer over a half-space.

It turns out that Love’s approximation, originally derived for incompressible media, may be applied for com-
pressible media as well but is valid only in a limited range of cases. The paper is structured such that the entity
H/V is discussed for models of increasing complexity: homogeneous half-space, impedance surface, layer over
half-space.

2. The homogeneous half-space

Although the following calculations are straightforward and well documented in the textbook literature (e.g.
[11]), we felt it to be useful for the understanding of the more complicated models to briefly present the gen-
eral ideas to expredd/V for this situation as well. The 2D-Rayleigh wave motion is described in a cartesian
coordinate system with its origin located on the surface of the half-spacex;Faeis points into the direc-
tion of propagation while thexs-axis is directed into the half-space. Our starting point is the Navier
equation:

82Lt,' 82u,~

A
axj'axj' +( +M)8xi3xj'

m =pii;, =123, Q)

with the components of the displacement vector denotedi;by. and i the Lamé’s parameters, andthe
density. Einstein’s summation condition is understood and the time derivative is denoted by a dot. The depth-

dependent Rayleigh eigenfunctions até = U;(x3)(( = 1,3). The assumption of harmonic plane
waves:
ui = Ui(xg) €000 ;=13 @

with wave numbek, angular frequency, and timet leads to the following coupled system of differential equations
of second order:

yU7 (x3) + ik(1 — y)Ug(x3) — PU1(x3) = 0, Uz (x3) + ik(1 — y)Uy(x3) — yQU3(x3) = 0. ®3)

The derivatives with respect t@ are labelled by dashes. The imaginary unit is denoted pysithe squared ratio
of shear-wave velocity to longitudinal-wave velocity:

B? 1
= —" = 4
T2 T x 2u “)
andP andQ are defined by
P=k -k, Q=K -k, (®)

wherek, andkg are the wave numbers of longitudinal and transversal waves, respectively. By introducing the square
roots ofP andQ:

p=~vP, q=0 (6)

WAMOT 1184 1-11



P.G. Malischewsky, F. Scherbaum/Wave Motion xxx (2004) xxx—xxx 3

72 and the integration constarfs, Cp, Cz, C4, the general solution of (3) can be written as
73 Uip(x3) = C1E P8 4 Co P8 4 C3e7 %8 4 Cpe®s,

. k k
Us(xa) =i | Lere s — Leyes 4 Soge®s — S e @)
74 k k q q

75 For the half-spac€, = C4 = 0 must hold. The remaining constai@@s andCgz are usually determined from the
76 condition of a stress-free surface:

77 Si3=0, i=1 3forx3=0, (8)
78 whereSs(xs) are the corresponding-dependent stress tensor components defined by
79 S13(x3) = pB[U}(x3) +ikUa(x3)],  S3a(x3) = pa?[Uz(x3) + ik(1 — 2)U1(x3)]. 9

8o Setting the determinant of the homogeneous system (& f@ndCs to zero results in Rayleigh’s equation with
81 the phase velocity = w/k andé = ¢/8:

C2 2
o 4pq—k2<2—ﬁ> =0 or F=4/1-y2/1-£2—(2-£%=0 (10)

83 and
2pq
84 C3 = _Q—i-szl. (11)
85 The simple formula foH/V mentioned above is then (see 4l]):
_|H|_|B©O| _ fg _ V1= (12)
86 =v|T UsO)| Vp =~ 2—c2/p2°

87 The ellipticity x depends only on Poisson’s ratioln terms of the phase velocity it is expressed here for the first
g8 time analytically by applying the formula of Malischewdly?]. With the auxiliary function$y, hy, hg, hy, defined
80 by

_ 2 3 _
ha(v) = \/ ST IO Iy = Y ) = YAT3VEh0) + o,
91 =1 v—1
%2 ha(v) = V4 sign2 — 51))\3/ [—3v/3h1(v) + ha(v)] Sign(2 — 5v), (13)

93 we obtain
o aVh3() + ha(v) =5

u AT tha) -2
95 The symbol sign{) stands for the signum function. It is assumed that the cubic root is located in the first and fourth
96 quadrants, depending on the sign of the imaginary part in the argument of th€&igdt.shows the well-known

97 behaviour ofy in dependence onfor all possible values of Poisson'’s ratio. It should be noted that, contrary to the
98 models to be discussed in the following, there is no dependence on frequency.

(14)

99 3. Impedance surface
100 In a low frequency approximation, TierstglB] introduced special boundary conditions on the surface in order

101 to simulate the elastic behaviour of a thin layer over an half-sgéige 2 shows the assumed configuration. Note
102 thatin this case the origin of the coordinate system is located on the boundary between layer and half-space.
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Fig. 1. The ellipticity for the homogeneous half-space in dependence on Poisson’s.ratio

The elastic parameters in the layer are indexed as 1 and unindexed for the half-space, respectively. The thickness
of the layer isd. For Rayleigh-wave motion the stress-free conditions (8) are replaced by Tiersten’s boundary
conditions:

S13+ e1U1 = 0, S33+¢e3U3 =0 forxz =0, (15)
with
A1+ 1) P1° 2
—dopo? |1 - 22 T2 and =d . 16
1= ane [ 2u1+ A1 c? £3 = dne (16)

Recently Bovik[14] succeeded in improving these boundary conditions by introducing derivatives of stress com-
ponents on the right sides of (15). They are then correct in an asymptotic sense up to the dydso-Cdlled
O(d)—boundary conditions). A further discussion of the implications of both kinds of special boundary conditions
is beyond the scope of this article. Here we calculate the ellipticity of Rayleigh waves under the conditions (15).
The general solution is the same as in (7). But in applying (15), we realize that Rayleigh’s equation (10) has to be
replaced by the frequency-dependent equation (compard1fh

WP FE) — %3 (83\/ 1 y82 4 1)1 52) £+ 5 (1 —y1- 21— sZ) =0 (17)

X1

Fig. 2. Layer with thicknesd over a half-space.
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Table 1

Parameters for model 1 (left model column) and model 2 (right model column)

Parameters Model 1 Model 2

Layer
a (km/s) 1.5000 3.0000
B1 (km/s) 0.5000 1.0000
p1 (g/cr?) 2.0000 2.0000
V1 0.4375 0.4375
d (km) 0.3000 0.3000

Half-space
oz (km/s) 5.2000 5.2000
B2 (km/s) 3.0000 3.0000
02 (glcn?) 2.7000 2.7000
V2 0.2506 0.2506

and (11) becomes

_ 2
Cs— q(e1p — 2pB°P) L (18)

 pleg — pB2(k2 + Q)]

After some algebra, the ellipticity of Rayleigh waves for the impedance surface can be written as

_ koBIpk? + q(p — 2P)] (19)
e1(QP — pk?) + ppPkG P’

Expression (19) for the ellipticity for model 1 (s@able J) is presented ifrig. 3as a function of the dimensionless
parameter!/A g, with the wavelengtlig, of the shear waves in the layer. Here, the ellipticity for the homogeneous
half-space with stress-free boundary conditions is additionally included as a dashed line. It becomes obvious
that the introduction of the simple impedance-surface model already yields a strong frequency dependence of
the ellipticity. However, the peak appears at lower frequencies with respegh than is often observed for
realistic sedimentary site models where the peak is cloggitg, = 0.25 (e.g.[7]; see also discussion related to

Fig. 5.

*A_m;:__________

—
0.1 0.2 0.3 0.4 0.5
d/Ag,

Fig. 3. Ellipticity x of the impedance surface (full) and the half-space (dashed) in dependeditespn

WAMOT 1184 1-11



127

128
129
130
131
132
133
134

135

136
137
138
139
140
141
143

144

145

146

147
148
149
150

151

152

153

154
155
156
157
158

159

160
161
162
163
164
165

166

6 P.G. Malischewsky, F. Scherbaum/Wave Motion xxx (2004) xxx—xxx

4. Layer over half-space

In the following, we consider the most interesting case of a not necessarily thin layer over an half-space. The
geometry is as ifrig. 2and we use label 1 for the parameters of the layer and label 2 for the half-space, respectively.
Love [10] investigated this problem under the simplifying assumption that both media are incompressible. We do
not reproduce Love’s original derivation in detail here, but in the course of its generalization for compressible media
we follow his argumentation by and large. Since Love’s approach is not very well known, it is worth to make a few
remarks about the incompressible case, though. In this case, Lamé’s parametethe velocity of longitudinal
wavesw are infinite. In formulating the equation of motion it has to be taken into account that the product:

A0 = Au;; =11, (20)

whered is the vanishing volume strain, adopts afinite valliavhich is interpreted by Love as a hydrostatic pressure.

In addition, the stress componeg has to be modified in the same manner. The modified equation of motion can

be solved by introducing scalar and vector potentials and prescribing a convenient vdlueJorthe other hand,

the general solution (7) and the period equation (10), respectively, are also valid for the incompressible case when
taking the limita — oo. The root of Rayleigh’s equation for incompressible media was presented analytically by
Malischewsky{16]. We continue with the compressible case by writing the solutions for the layer and the half-space
in a modified way in order to be more consistent with Love:

Uil) (x3) = i[—L1cosh(p1x3) + Lz sinh(p1x3) — L3 coshgixz) + Lasinh(g1x3)],
pP1 . k .
UsP (x3) = 7[—L1 sinh(p1x3) 4+ L2 cosh(p1x3)] + E[—Ls sinh(g1x3) 4+ L4 cosh(g1x3)],

. k )
UP (xa) = —il 416777 + Aze 0], UP(xg) = 2 e 4 Az~ e, (21)

Herel, Lo, L3, L4 are the integration constants for the layer andA; for the half-space, respectively. The relevant
stress tensor components, belonging to these eigenfunctions, are denaﬁé)c{;&@y, S%) (x3); Sfo’) (x3), Sé? (x3).
In the following, because of the cumbersome algebra we are omitting some of the intermediate results in detail and

focus on the essential steps and the final result. The stress-free conditions of the surface:

S8 (—d) = S5 (-d) =0 (22)
together with the continuity relations on the boundary between the layer and the half-space:
@ =020, UPO=00, SFO=S30, SFO=s30 (23)

yield an homogeneous system of six equations for the six condtants, L3, L4, A1, Az. Its determinant has

to be zero to yield the period or secular equation for this model. This equation determines the phasecvedocity
Rayleigh waves in terms of the frequency or the wave length. There are several possibilities to write this complicated
equation, which is a generalization of (10) and (17), in a convenient manner. We used the formula of Ben-Menahem
and SingH11], which is given here only symbolically as

A(c,w) = 0. (24)

This equation depends on eight parameters: six elastic parameters, layer’s thickness and frequency. Itis not surprising
that it is impossible to discuss the roots of this equation in complete generality. Instead, we pick out some typical
parameter combinations, which are important for practical reasons. The same is true for the correspdhditig
which will be discussed in the same manner.

Letus assumethat (24) is solved already. The crucial trick of Love in order to get areasonable analytical expression
for the ellipticity was to express the constahts— L4 by A1 andA by applying the continuity relations (23):

L1 =111A1 + 11240, Ly =121A1 + 12240, L3 =131A1 + [32A0, L4 =141A1 + [42A5, (25)
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where the coefficientg; — 142 are complicated functions of the eight parameters mentioned above. Furthermore,
it is possible to introduce these equations into the stress-free conditions (22) which yields the two equations:

c11A1+ c1242 =0, €21A1 + c22A2 =0, (26)

where the coefficients;; — c22 are again complicated functions of the eight parameters. In order to obtain the
ellipticity x itis necessarytoformthe expressi@‘ﬁ) (—d) andUél) (—d)from (21). By using (25), these expressions
are linear functions of the half-space constait@andA;. It turns out that they can be considerably simplified by
introducing the relations (26). After this step the ellipticitys written as

_ Uil)(—d) _ duA1 +dipAz 27)
U:(,,l) (—d)| d21A1+d22A2
with the new coefficientdy1 — do2. We are able to eliminat&; by using, e.g. the firdEq. (26)and obtain
d11 — c11d.
_ Crednn — cndiz. 28)
c12d21 — c11d22
Finally, it is convenient to write this expression as a product of three fafitdes fs:
2
c 1 1+ ytanhdpi)
X = fifafs, =1l-—, fo= , fa= . 29
ffefs, A 25,2 f: Y f: 7 tanhdpy) (29)

The entityyis a very complicated function of the eight parameters mentioned above and is presémeerndix A
It should be noted that this final result can be obtained in a reasonable manner only by using symbolic calculation
as iInMATHEMATICA. It is valid also for all higher modes of Rayleigh waves, but in the following we will only
discuss the fundamental mode. Love’s result for incompressible media was
2
Xinc=f1iy=\1—— | (30)
2p2
wherey has a similar structure as our facfey but it is not identical. Love’s argumentation was thas a slowly
varying function very near to 1 so that the simple formula:

2

2p2
is a good approximation foHfV|. However, it should be critically noted that by far not all parameter combinations
yield such a simple result as we will see later.

Next we will discuss the general case of compressible media. It can be easily realized from (29) that for the limit
w — o0 f3is unity and f1 f> adopts the half-space valyeaccording to (12) with the parameters of the layer.
Because of the complexity of the value for the other limi — 0 cannot be deduced analytically in a simple
manner, but numerically it approximately adopts the half-space value (12) with the parameters of the half-space.
For intermediatev-values between 0 ansb, the exact formula (29) has to be used. It turns out, however, that for
certain parameter regions the prodygys is fairly close to 1, so that in these—and only in these—special cases
Love’s formula (31) can be used for compressible media as well. To demonstrate this we use two different models
with high {1} and low{2} shear wave contrasts, for which the parameters are givéatite 1

In Fig. 4, the productf> f3 is presented for both models as a functior/ptg, . We realize that only for model 1
with the higher velocity contrast there is an intermediate regiafy bf,—values (between 0.25 and 0.45), where
f2f3 approximates 1, while for both models the product goes to # fog, > 0.55.

In Fig. 5 we present a comparison between the exact ellipticity after (29) and the approximation (31) as a function
of d/rg,.

(1)

Xinc ~ 1 —

WAMOT 1184 1-11
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Fig. 4. The producif> f3 for model 1 (full) and model 2 (dashed), respectively, in dependendgig);.

202 For higherd/xg,-values (>0.5), the coincidence is very good for both models. However, the range below the
203 root of x, which is very important for practical applications, is much better approximated by Love’s formula for
204 Model 1 with the higher beta contrast than for model 2. It may be that this is a general tendency. The singularity of
205 H/Vrequires special considerations. For practical applications it is often assumed that the corresponding frequency
206 IS related to the so-called “shear-wave resonance” in the layer (se| 2-d9). That means it is assumed that

207 the singularity occurs for such frequencies, where the layer’s thickness is one quarter of the wavelength of shear
20s Waves within the layer, i.e. by using our nomenclatéfg, = 0.25. Until now, this statement was never proven

209 analytically. We realize fronfrig. 5, that it is very well fulfilled for model 1, but only approximately for model 2.

210 Due to the enormous practical consequences, it seems worthwhile to investigate the validity of this statement for
o1y different shear-wave contrasts by using our exact formula £2§) 6showsd/Ag, for the peak value dfi/V versus

212 the beta contragt,/B1. Here, the parameters of the half-space are not changed and Poisson’s ratio of the layer is
213 assumed to be constant asTable 1

214 It is remarkable that for beta contrasts greater than 3.5 the statement is very well fulfilled which is in conformity
o15 With practical experience from site conditions with high impedance cor{28tBut it cannot be said, that the

216 Statementis generally true. Especially, the occurrence of a strange singulafity fer~ 2.6 requires an additional

,17 investigation, which, however, is beyond the scope of the present paper.

218 It is also interesting to study the influence of Poisson’s ratim the layer on the quality of the approximation.

219 Fig. 7shows a 2D-density plot of the standard deviatiam percent of Love’s approximation for two models with

2o higher and lower shear-wave contrast, respectively, in dependengeaoid/2 g, .

BolB1 =86 Bolfy =3

l

6

! A
D I [ /
= T
0 02 04 06 08 1 O 02 04 06 08 1
d/Ap, d/a,

Fig. 5. Exact values of for model 1 (left, full) and model 2 (right, full) and Love’s approximation for model 1 (left, dashed) and model 2 (right,
dashed) in dependence dig, .
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0.4

0.35

©
w

0.25

0.15

d/Ag, for the singularity
<) o
- [N

0.05

2 4 6 8 10 12
P2l b1

Fig. 6.d/ 1, for the peak value ofi/V in dependence gf2/B;.

Palf1=6 Pa/p1 =3
1

0.8
0.6

0.4

0.2

01 02 03 04 05 01 02 03 04 05
Poisson's ratio v4 Poisson's ratio v4

Fig. 7. Contour plot of the standard deviatidm percent between exagtand Love’s approximation for model 1 (left) and model 2 (right) in
dependence om andd/Ag, . The white lines indicate; = 0.4375 as used in both models.

Lower values of are indicated by red colours and higher values by blue onesvtsed for both models is
indicated by a white line. The complicated fine structure of the error function in these pictures demonstrates the
complexity of the interrelation dfi/V with its approximation by Love. However, it becomes obvious, that there is
a greater “red island” (for 85 < v; < 0.45 and 025 < d/1g, < 0.4) for model 1 with the higher beta contrast,
where Love’s approximation works quite well. It can be seen, that we are at the border of this island with our
value. This red island is much smaller for model 2. In addition it comes at no surprise, that in conformiggvih
we are always in the red range for sufficiently higf.g, .

5. Conclusions

It is well known that the dependence of the ellipticity of Rayleigh waves on frequency is very sensitive on the
material properties of the propagation medium. Its study is important from a theoretical as well as from a practical
perspective. The exact analytic formula derived here is an effective tool for doing this. Already the comparatively
simple model of 1 layer over half-space, which nevertheless is important for practical applications such as site
effect studies, yields a great variety of appearances. Not all of them are understood analytically yet. We find that
Love’s simple approximation can be profitably used for compressible media if the shear-wave contrast (i.e. the
impedance contrast) between layer and half-space is high enough. For a completely unknown model, however, the
exact formula has to be used. A natural next step would be the treatment of a model with a gradient. This, however,
is beyond the scope of the present paper.
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The coincidence between the shear-wave resonance frequency and the frequency of the pddR/erfatie,
often used in practical applications, could be confirmed numerically for models with high impedance contrast.
However, its analytical relation still remains to be investigated further, which is the topic of ongoing work. The
exact formula derived here could be a natural starting point among others.

Appendix A. Theauxiliary entity y

By introducing the abbreviations
g1 = p2qik®(mamg + 2 frmima), g2 = —2k?p1gi(mimz — 2m3paq28ie),
g3 = k2(moms — 2 f1paqom3), g4 = 2k%prgr(mamy — 2m3paqadiL),
g5 = —2p1g1k>(fim? + pagomadi), g6 = 2k?p1ga( frmamz — msdi)
with
S = p1 — pz, Sp=p1—p2
and

m1 = 225 + 0lpr,  mo = 2&%5u — ?8p,  mz = 2k25p — w?p,

2 2 '3% 4 w*5p 2.2 '3%
ma = =45 + 2w m=r2g ), m5=4k5u+7+2kw 02 ?+1 —-2m
1 1 1

the entityy is obtained in the form:

y= 8 coshdqy) + g2 sinh(dpy) + g3 sinh(day)
gacosh(dpy) + gs coshday) + ge sinh(day)
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