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A signal processing method for circular arrays 

John D. Henstridge* 

The theory of spectral representations of stationary random processes can be a useful tool in signal pro- 
cessing. Using this theory, it is possible to derive simple methods of estimating the phase velocity of surface 
waves from observations made with a circular array. The methods are totally nondirectional, thus allowing the 
use of microseisms for exploration seismology. Furthermore, the methods can be extended to yield directional 
information about both correlated and uncorrelated signals. 

INTRODUCTION 

Measurement of the dispersion of surface waves is 
potentially a method of gaining information about 
the structure of the earth immediately below the point 
of measurement. 

ToksGz (1964) investigated this by observing the 
dispersion of microseisms. However, when using 
most arrays, this problem is made difficult by the 
need to estimate simultaneously the direction of travel 
and the velocity of the microseismic waves, an expe- 
cially difficult task when waves are traveling in 
several directions. Aki (19.57, 1964) pointed out that 
the use of a special design of array, consisting of 
seismometers equally spaced on a circle and one 
seismometer at the center, could simplify processing 
to overcome these difficulties. 

In this paper, we first provide a mathematical back- 
ground for the problem by employing the theory of 
stationary stochastic processes and their spectral 
representations. With this background it is then 
shown that Aki’s method, which involved averaging 
the observed correlations between the center seis- 
mometer and each seismometer on the circle, can be 
extended to the situation where waves arriving from 
several directions are correlated. Furthermore, a 
method is given for testing the assumptions which 
must be made in applying the technique. The final 
section gives some simple examples. 

STATIONARY PROCESSES IN THE PLANE 

We begin by considering stationary random pro- 
cesses z(t, [j defined in time and the plane, where 

t is time and t is the location in the plane. These will 
have a spectral representation (see Yaglom, 1961), 

where w is the frequency (in radian\ per unit time), 
K the vector wavenumber (in radians per unit dis- 
tance), and 5’ is a random spectral process wsith un- 
correlated increments. While this representation was 
derived by Yaglom as a purely mathematical result, 
it can be given a physical interpretaticln. It states that 
any stationary process in time and space can be con- 
sidered as a continuous sum of independent waves 
with different frequencies w and wavenumbers K. The 
random spectral measure 5’ gives the amplitude and 
phase of each of these waves. While all stationary 
processes can be represented in this way, we shall 
see below that it is not always the mo\t useful repre- 
sentation. 

It will be convenient to consider thi\ representation 
in polar form. If 5 = r(cos 0, sin 0) and K = k(cos c$, 

sin r$), then 

m cc 7r 
z(t,r,O)= 

JII 
exp{- iwt - irk. 

0 

. ,cS -;I] {(dw. dk, d4). 

We can make an assumption that at each frequency 
CO, the energy is concentrated at a single wavenumber, 
that is, the velocity is a single valued function of 
frequency. This corresponds to the \pcctral process 
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5 being concentrated on a curve [w, k(w)], and 
we have 

X 7r 
z(t,r,0)= 

li 
exp{-iwr - irk(o). 

. Zs(B” qb)}<(dw, d$). 

The assumption about the velocity is a key one. Later 
we give a method which tests whether it holds in 
practice. 

A frequency-direction spectral density f(w. c$) 
can be defined by 

which gives the average energy at frequency w arriv 
ing from direction 6. 

Using this density, we may define a spatial covari- 
ante function 

T(w, r, 0) = 
I 

* exp{irk(w)cos(O - 4)). 
-77 

which measures the covariance at frequency o be- 
tween the signals observed at (say) the origin and 
(r. 0). It is a quantity easily measured in practice 
using either analog or digital correlation techniques. 
We shall be more interested in an averaged covari- 
ante function, 

where J, is the zero-order Bessel function of the first 
kind and 

f”(W) = I” f(w, $)d&. 
pli 

It can be seen that the averaged covariance function 
is not dependent upon the directional properties of the 
process. It should make no difference whether there 
is a single signal or many. 

The spectrum of the process at a single point in 
space is f,,(w) so that the averaged complex coherence 
would be p(w, r) = J,[rk(w)]. Aki (1957) suggested 
using this fact by having an array of seismometers 
equally spaced on a circle of radius r and having an 

extra seismometer at the center. At each frequency 
of interest, the coherence between each of the seis- 
mometers on the circle and the one in the middle was 
averaged to obtain an estimate b(w. r) of the aver- 
aged complex coherence. Then an estimate l(o) 
can be formed for the wavenumber by letting 

J,[rk^(o)] = Real(g(w, r)]. 

In practice, we would want to be able to observe 
as wide a frequency range as possible while keeping 
the radius of the array fixed. The function J,[rk(w)] 
is one-to-one for t%(o) over the range 0 to ~3.8. 
But in practice, not all of this range can be used since 
at each end any errors are greatly magnified because 

Variance[k(w)] = Variance[c(w, r)] . 
. {rJ1 [rk(w)]}-*. 

This usually means that rk(w) must lie in the range 
.4 to 3.2, or alternatively the wavelengths must lie 
between 2r and 15r. 

Aki suggested that p(w, r) could be estimated by 
considering the coherence between the center seis- 
mometer and the average of the outputs of the seis- 
mometers on the circle. We now show that this is 
not correct, but it does lead to a method of testing for 
nonpropagating noise or multiple velocities. 

We shall define the center sigal by 

x,(t) = =(r, 0, O), 

and the circle signal by 

Jo(t) = (27r-’ 
I 

li -_( t, r, O)d/3. 
-77 

Expressed in terms of the spectral process 5, they are 

I 

r 
x,(t) = exp{ -iwt} 

I 
_: <(dw, d+)> 

and 

y”(t) = 1’ ST (2~)~’ IX exp{-iwr 

-yrkLi) cos(t3 --i)jdO [(do, d$) 

= 
J 

x exp{-imt}J,[rk(w)] . 
-cc 

-jr <(dwd+). 
-77 

If we let 

I 
n 5(w> d+) = d<,(w), 

-7r 

then these simplify to 
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x0(t) = J x exp{-iwt}d<,(w), 
-CC 

and 

).0(r) = 
I 

x exp{-iwr}J,[rk(w)] d<,(w). 
--3c 

This implies that the circle signal Y”(r) can be re- 
garded as a linearly filtered form of the center signal 
X,(I), with gain function J,,[rk(w)] (see, for example, 
Koopmans, 1974, p. 86). Except when J,[rk(o)] = 

0, the complex coherence between the two signals 
will be 1 or -1 depending on the sign of J,,[rk(w)]. 

Furthermore, the introduction of either noise or an- 
other significant velocity will reduce this coherence 
to a value less than one. 

There are two practical outcomes of this. First, by 
estimating the coherence between the center signal 
and the circle signal (in practice obtained by averag- 
ing the outputs of the seismometers on the circle), a 
check can be made on the assumptions necessary to 
apply these techniques. Second, if the gain function 
is estimated [considering x,(t) as the input to the 
filter and y,(f) as the output], it could be used as an 
alternative estimate of J,[rk(o)], and hence k(w) 
may be estimated. Any standard procedure for 
estimating the gain may be used (see, for example, 
Brillinger, 1975, p. 302). However, this method of 
estimating k(w) has one disadvantage over the method 
that Aki proposed-the seismometers would have 
to be precisely calibrated. If the seismometer gains 
vary, it is even possible to have an estimated gain 
function which is greater than unity at some fre- 
quencies. Obviously, no sense can be made of this. 
However, as we shall see in the next section, a slight 
extension of the technique makes this disadvantage 
worth overcoming. 

FOURIER-BESSEL ANALYSIS USING A 
CIRCULAR ARRAY 

The termsfo(w) and &,(o) may be regarded as the 
zero-order terms in the Fourier series of f(o, 4) 
and ((0, $), respectively. The higher order terms 
will be defined by 

.fn?(w) = j--L exp{-im+If(w, +I@, 

and 

i,(w) = 1-L exp{-im415(~, d4). 

Then the inverse relations are 

and 

,?I=--r 

Furthermore, the original process :(t, r, 0) can be 
expressed in terms of 

J 
z r 

z(t, r, 0) = 2 exp{ -iwr} * 
--r ,)1=--r 

. (27r-’ 1: exp{-irk(w) . 

. cos(0 - 6) + im&}d$d<,,,(w) 

I 
x r 

= C exp{-iwr + im0). 
--r m=--r 

Now we define what we shall call the rnth order 
circle process: 

I 

Z 
y,(t) = (27T)-t exp{-im0}=(t, r, 19)dB 

-?7 

= 

I 
z exp{-iot}J,,,(rk(w))d5,,,(o). 

-x 

Hence, the circle signals provide a method of isolating 
the Fourier components of the spectral process. 

Before examining this further, we shall introduce 
a slight extension to cover some cases where energy 
arriving from different directions is correlated. Two 
obvious cases are that of a signal and its echo and 
that of a scattering medium. In both these cases, it is 
reasonable to assume that the observed signals are the 
result of unobserved uncorrelated signals undergoing 
some form of scattering which alters the directional 
distribution of energy. The only model for which the 
mathematics is workable is that where this scattering 
is linear and isotropic (that is, the same for signals 
arriving from all directions). With such a model, the 
spectral process of the observed process can be repre- 
sented as a convolution of the original spectral pro- 
cess with some suitable function. 

We define a scarrering jiincrion W(o,$,), and a 
new spectral process to, by 

CO(% 4) = J_;= W(w3 6 - $) 5(% Q). 

This equation implies that d{“(w, 4), the observed 
energy at frequency w from direction 4, is generated 
by summing the contributions of an original un- 
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scattered process 5. The sum is weighted by the 
function W. Note that in general co does not have 
orthogonal or uncorrelated increments in I$. Hence, 
our representation is no longer the standard one of 
Yaglom. 

Usually W(o, I,!J), considered as a function of $, 
would have a single main peak at zero, implying 
that most of the energy is only slightly scattered. It 
could be complex valued if the scattering involves 
time delays. We shall assume that W(w, $j has a 
Fourier expansion with respect to IJJ, that is 

W(0, $) = (2~)~’ 2 exp(im$t) C,(w). 
VI=-x 

Since the unscattered process is not observed, we 
may assume that C,(wj = 1. If the scattering is 
significant and W(o, +) is thus a smooth function in 
$, we would expect the higher order coefficients 
C,,,(w) to be relatively small. 

Since {“(o,$) is defined by a convolution, we 
have 

loco, d4) = (23--l 2 exp(im4) . 
1)1=--a 

. C,(w) 5,(w)4, 

f 
.fo(o) 

G(w) = 

Since we can assume that C,,(w) = I, the center 
signal will be defined as before. Then the covariance 
relations between the circle signals and the center 
signals will be 

E[x,(s)x,(s + t)] = 
I 

m exp{iwt} f0 (w) dw. 
--oc 

As in the previous section, it seems most useful to 
compare the center signal with each of the circle 
signals. The bivariate signal [x,,(t), v,,(t)] has a 
spectral density matrix G(w) given by 

and 

J 
Note that in the case m = 0, G(o) is not affected a z 

z(t, r, 0) = x exp{--iwt + imf3) - by the presence of scattering [since C,(w) = I] and 
--m m=-m hence the results of the previous section are indepen- 

*J,[rk(w)l C,(w) G,(o), 
dent of this type of correlation in the observed signals. 

PRACTICAL CONSIDERATIONS 

Y,(f) = 
I 
m exp{--iwt} . 

--m 

.J,[Mw)l C,(o)&,(w). 

Now we can proceed to examine the properties of 
theae circle signals. First, we note that 

-__ 

Consider a practical array with p seismometers 
equally spaced on a circle. Obviously, the integral 
definition of the circle signals cannot be used and 
instead a finite sum must be formed. If we let the 
polar coordinates of the seismometers be (r, 27rup-‘), 
a = 1, 2, , p, then the rnth ol-dcr circle process 
will be 

jm(f) =p-l i z(t, r, 2nyt I) . 

. exp{-i8$ + im4’). 
u= 1 

. E(Ww &J) 5kfw 4b’)) 
. exp{-i2nmu~~~‘}. 

E/T exp{-i(l-tn)}. 

This need only be calculated for 111 = -hp, , &p 
since a form of directional aliasing will occur, and 

.f;o, $)d+ dw 
Ym(l) = 2 Ym+ph4) 

k 
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*C m+Pk(W)4?n+pk(W). 
However, J,(X) tends to zero very rapidly as n tends 
to infinity so that this aliasing will not be significant 
for reasonable values of p except at those frequencies 
where J,[rk(w)] is close to zero. At those fre- 
quencies, the higher order abased terms will dominate 
and confuse the results. 

We now consider the bivariate signal [x,(t), 
v,(t)]. This may either be analyzed in real time using 
narrow-band filters or alternatively be recorded and 
processed using the fast Fourier transform. Either 
way, an estimate of the spectral density matrix G(w) 
can be obtained (see, for example, Koopmans, 1974). 
Using this estimate of G(o) we may define the 
following functions: 

the mth order circle coherence, 

cm(w) = lG12(0)/[G11(~)G22(~)1-~“, 

the mth order circle phase, 

0,(o) = phase G12(co). 

and the rn th order scatter function, 

S,(w) = Gz(~)/G,lb). 

Observe that asymptotically (as the spectral density 
estimates tend to the true values) o,(w) approaches 

If, (0) I lfo(o) 9 Brn approaches phase [c,(o)1 + 
phase [f-,,,(w)], and S,(w) approaches J,[rk(u)]* 
[C,(O)/~. Unfortunately, it is not possible to esti- 
mate the phases of f,(w) and C,(w) separately since 
the unscattered process is not observed. The following 
examples will demonstrate the usefulness of these 
functions. 

Example 1 
The first example worth considering is that of a 

single signal arriving from direction & observed 
without scattering. Then 

f(w, 4) =f(w) 6(4 - #Jo), 

and 

W(w, $) = S(lcI), 

where 6 is the delta function. This gives 

fo(oJ) =f(w), 

fm(o) =f(w) I exp{-im+] S(4 - &)dJI 
=f(w) exp{-im&], 

and 

C,(w) = 1. 

The asymptotic values of the functions urn, 0,, 
and S, are given by 

(T,(w) = 1, 
0,(w) = -m&i, 

and 

S,(w) = J,(rk(w))‘. 

In practice these functions can he calculated, and 
it would be easy to decide if they are of the above 
form. If so, the direction of the signal can be easily 
estimated from 0,(w). It is interesting to compare 
this method with virtually all other methods of finding 
directions of signals. Most of them involve finding 
the maximum of some function (an estimated wave- 
number spectrum, for example) wjhile the above 
method only requires evaluation of an explicit 
function. 

Example 2 
If two signals are present, the problem is much 

more difficult. We would have 

fo(oJ) =f(w) + g(w), 

and 

The functions u,, 0,,, and S, will now be hard to 
interpret. However, it is obvious that o,(w) < I, 
M # 0 at most frequencies, and in practice this could 
be used as an indication of the presence of more than 
one signal. 

Example 3 
If the scattering function is simply assumed to be 

real and symmetric about zero, then the situation is 
only slightly modified. In this case the coefficients 
C, are real and C,(w) = C_,(w), and the functions 
urn(o) and 0,(w) will be unchanged. The presence 
of scattering will be demonstrated by the change in 
S,(o). If the function has a smooth broad peak at 
zero, it will usually be found that IC,(w)( < 1 for 
m f 0, and consequently S,(o) wpill be small for 
m f 0. In general, small observed values of S,(w) 
will imply a high degree of scattering. 

CONCLUSIONS 

This paper developed first a physical interpretation 
of the spectral representation of stationary process 
to provide a context in which earliet- results of Aki 



184 Henstridge 

could be analyzed. It was then possible to obtain an 
alternative method of estimating wavenumber func- 
tions and a test for the validity of the methods. 

The second part extended the methods to obtain 
directional information from the data. This was done 
by deriving explicitly defined functions which are 
often readily interpreted. This is in contrast to almost 
all other methods of array processing which require 
nonlinear maximization of functions and which do 
not identify correlations between waves from differ- 
ent directions. The appropriate context for these 
methods appears to be in obtaining a quick analysis of 
data, and as a starting point for more refined methods. 
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