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A signal processing method for circular arrays

John D. Henstridge*

The theory of spectral representations of stationary random processes can be a useful tool in signal pro-
cessing. Using this theory, it is possible to derive simple methods of estimating the phase velocity of surface
waves from observations made with a circular array. The methods are totally nondirectional, thus allowing the
use of microseisms for exploration seismology. Furthermore, the methods can be extended to yicld directional
information about both correlated and uncorrelated signals.

INTRODUCTION

Measurement of the dispersion of surface waves is
potentially a method of gaining information about
the structure of the earth immediately below the point
of measurement.

Toksoz (1964) investigated this by observing the
dispersion of microseisms. However, when using
most arrays, this problem is made difficult by the
need to estimate simultaneously the direction of travel
and the velocity of the microseismic waves, an espe-
cially difficult task when waves are traveling in
several directions. Aki (1957, 1964) pointed out that
the use of a special design of array, consisting of
seismometers equally spaced on a circle and one
seismometer at the center, could simplify processing
to overcome these difficulties.

In this paper, we first provide a mathematical back-
ground for the problem by employing the theory of
stationary stochastic processes and their spectral
representations. With this background it is then
shown that Aki’s method, which involved averaging
the observed correlations between the center seis-
mometer and each seismometer on the circle, can be
extended to the situation where waves arriving from
several directions are correlated. Furthermore, a
method is given for testing the assumptions which
must be made in applying the technique. The final
section gives some simple examples.

STATIONARY PROCESSES IN THE PLANE

We begin by considering stationary random pro-
cesses z(t, £) defined in time and the plane, where

¢ is time and ¢ is the location in the plane. These will
have a spectral representation (see Yaglom, 1961),

z(t, &) = f_w JRZ exp{—iwt — ik.&}-
' (dw, dk),

where w is the frequency (in radians per unit time),
« the vector wavenumber (in radians per unit dis-
tance), and ¢’ is a random spectral process with un-
correlated increments. While this representation was
derived by Yaglom as a purely mathematical result,
it can be given a physical interpretation. It states that
any stationary process in time and space can be con-
sidered as a continuous sum of independent waves
with different frequencies w and wavenumbers k. The
random spectral measure ' gives the amplitude and
phase of each of these waves. While all stationary
processes can be represented in this way, we shall
see below that it is not always the most useful repre-
sentation.

It will be convenient to consider this representation
in polar form. If £ = r(cos 0, sin 8) and k = k{cos ¢,
sin ¢), then

z(t,r,0)=f ff exp{—iwt —irk-
—% J 0 -

-cos(B0 — )} {(dw, dk, do).

We can make an assumption that at cach frequency
w, the energy is concentrated at a single wavenumber,
that is, the velocity is a single valued function of
frequency. This corresponds to the spectral process
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{ being concentrated on a curve [w, k(w)]. and
we have

z(t,r,8) = fi f_ﬂ exp{—iwt — irk(w) -
cos(0 — )} (dw, d).

The assumption about the velocity is a key one. Later
we give a method which tests whether it holds in
practice.

A frequency-direction spectral density flw, @)
can be defined by

flo, p)dwdd = E|{(dw, dd)|*,

which gives the average energy at frequency w arriv-
ing from direction ¢.

Using this density, we may define a spatial covari-
ance function

INow,r,8) = fﬁ exp{irk(w)cos(8 — ¢)}-

flo, d)dd,

which measures the covariance at frequency w be-
tween the signals observed at (say) the origin and
(r,0). It is a quantity easily measured in practice
using either analog or digital correlation techniques.
We shall be more interested in an averaged covari-
ance function,

yiw, r) = (2m7)7} fj IN'w,r, 0)do

= [ emt |7 eptirk(o)-
- cos(0 — B)}dbf(w, $)dd

= Jy(rk(w)) f_:f(w, ) d

=Jo(rk(w)) folw),

where J, is the zero-order Bessel function of the first
kind and

f@ =] flo, s)dé.

It can be seen that the averaged covariance function
is not dependent upon the directional properties of the
process. It should make no difference whether there
is a single signal or many.

The spectrum of the process at a single point in
space is fp(w) so that the averaged complex coherence
would be p(w, r) = Jo[rk(w)]. Aki (1957) suggested
using this fact by having an array of seismometers
equally spaced on a circle of radius r and having an
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extra seismometer at the center. At cach frequency
of interest, the coherence between ecach of the seis-
mometers on the circle and the one in the middle was
averaged to obtain an estimate p(w. r) of the aver-
aged complex coherence. Then an estimate k(w)
can be formed for the wavenumber by letting

Jo[rkA(w)] = Real (p(w, r].

In practice, we would want to be able to observe
as wide a frequency range as possible while keeping
the radius of the array fixed. The function J,[rk(w)]
is one-to-one for rk(w) over the range 0 to =3.8.
But in practice, not all of this range can be used since
at each end any errors are greatly magnified because

Variance [12(0))] = Variance[p(w, r)] -

[k ()]}

This usually means that rk(w) must lie in the range
4 to 3.2, or alternatively the wavelengths must lie
between 2r and 15r.

Aki suggested that p(w, r) could be estimated by
considering the coherence between the center seis-
mometer and the average of the outputs of the seis-
mometers on the circle. We now show that this is
not correct, but it does lead to a method of testing for
nonpropagating noise or multiple velocities.

We shall define the center signal by

xo{t) =2(1,0, 0),

and the circle signal by

vol = 2m |

-

m

z(¢t,r, 0)d6.
Expressed in terms of the spectral process £, they are

0o = [~ ewt=ion [ gldo.a),

and
yolt) = j_i f_: (2m)- fjﬂexp{—iwt
— irk(w) cos (6 ~ $)}d0 L(dw, do)
= [ ewt=ion sl

—

-fj {(dw, d).
If we let

f (o, dé) = diy(w),

then these simplify to
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Xo (1) :fx exp{—iwt}d{y(w),

and

yolt) = [ expl-iats k)] dty(w)
This implies that the circle signal y,4(f) can be re-
garded as a linearly filtered form of the center signal
Xo(t), with gain function Jy[rk(w)] (see, for example,
Koopmans, 1974, p. 86). Except when J,[rk(w)] =
0, the complex coherence between the two signals
will be 1 or —1 depending on the sign of Jy[rk(w)].
Furthermore, the introduction of either noise or an-
other significant velocity will reduce this coherence
to a value less than one.

There are two practical outcomes of this. First, by
estimating the coherence between the center signal
and the circle signal (in practice obtained by averag-
ing the outputs of the seismometers on the circle), a
check can be made on the assumptions necessary to
apply these techniques. Second, if the gain function
is estimated [considering x,(r) as the input to the
filter and y,(¢) as the output], it could be used as an
alternative estimate of Jo[rk(w)], and hence k(w)
may be estimated. Any standard procedure for
estimating the gain may be used (see, for example,
Brillinger, 1975, p. 302). However, this method of
estimating & (w) has one disadvantage over the method
that Aki proposed—the seismometers would have
to be precisely calibrated. If the seismometer gains
vary, it is even possible to have an estimated gain
function which is greater than unity at some fre-
quencies. Obviously, no sense can be made of this.
However, as we shall see in the next section, a slight
extension of the technique makes this disadvantage
worth overcoming.

FOURIER-BESSEL ANALYSIS USING A
CIRCULAR ARRAY

The terms f,(w) and {,{w) may be regarded as the
zero-order terms in the Fourier series of f(w, ¢)
and {(w, ¢), respectively. The higher order terms
will be defined by

Fulw) = f " expl—ima} f(w, b)dd,

and

Lnlw) = f " expl{—ime} {(w, dd).

Then the inverse relations are
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flo.¢)=Q2m)7" Y exp{imd}fy(w),

m=—-x
and

=*

UHw,dd) =2m)! 2 exp{imo} {,,(w)dd.

m=-—x

Furthermore, the original process z(r,r,#) can be
expressed in terms of

Z(t,r,0)=f3c i exp{—iwt}

'(277)“f
. COS(O - QS) + 1m¢}d¢ dgm(w)
fx i exp{—iwr + im6} -

T m=—x

exp{—irk(w) -

Now we define what we shall call the mth order
circle process:

vl = @m |

x

exp{—im8}z(t,r, 8)do

x
=f exp{—iwt}J, (rk(w)) d{, (o).
—x
Hence, the circle signals provide a method of isolating
the Fourier components of the spectral process.

Before examining this further, we shall introduce
a slight extension to cover some cases where energy
arriving from different directions is correlated. Two
obvious cases are that of a signal and its echo and
that of a scattering medium. In both these cases, it is
reasonable to assume that the observed signals are the
result of unobserved uncorrelated signals undergoing
some form of scattering which alters the directional
distribution of energy. The only model for which the
mathematics is workable is that where this scattering
is linear and isotropic (that is, the same for signals
arriving from all directions). With such a model, the
spectral process of the observed process can be repre-
sented as a convolution of the original spectral pro-
cess with some suitable function.

We define a scattering function W(w,y), and a
new spectral process {°, by

. d) = [ Wio,d =)0, db).

This equation implies that d{"(w, ¢), the observed
energy at frequency @ from direction ¢, is generated
by summing the contributions of an original un-
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scattered process {. The sum is weighted by the
function W. Note that in general {° does not have
orthogonal or uncorrelated increments in ¢. Hence,
our representation is no longer the standard one of
Yaglom.

Usually W{(w, ), considered as a function of t,
would have a single main peak at zero, implying
that most of the energy is only slightly scattered. It
could be complex valued if the scattering involves
time delays. We shall assume that W(w, ) has a
Fourier expansion with respect to s, that is

®©

Ww )= Qm)~ S explimy} Cplw).
m=-—x

Since the unscattered process is not observed, we
may assume that Co(w)}=1. If the scattering is
significant and W(w, ¢s) is thus a smooth function in
¥, we would expect the higher order coefficients
C,,(w) to be relatively small.

Since {°(w, @) is defined by a convolution, we
have

-]

{w,dd) = (2m)! 2 explime} -
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:ff—m(w) dw.

Since we can assume that Cy(w) =1, the center
signal will be defined as before. Then the covariance
relations between the circle signals and the center
signals will be

E(ys)ynls +1)]= fw expliot} -

: J(’[rk(w)]‘]m[rk(w)] '
) C((&))C,,, (w)f(’—m(w)dws

Elxo()ym( + 1)] = f

) exp{i(ul} .

) Jm[rk(w)] Cm(w) .
fmlw)do,

and

Elxo(s)xo(s + )] = fw expliot} folw)dw.

As in the previous section, it secms most useful to

m=—cc compare the center signal with cach of the circle
- C @) L (@) d, signals. The bivariate signal [x,(), ¥, (#)] has a
spectral density matrix G(w) given by
folw) Ik (@) ]C (@) fo (@)
Glw) =
Jm[rk(w)]cm(w)fm(w) Jm[rk(w)]2|cm(w)|2f0(w)

z(t,r, 0) = S exp{—iwt + imb}:

—® m=—o

I nlrk(@)]Cp(w) di (o),
and
ym(t) = f exp{—iwt}-
I n[rk(@)] Cp(w)d, (w).

Now we can proceed to examine the properties of
these circle signals. First, we note that

E( (do) ydon = [ 77
-exp{—ifd + imd'} -
‘E(dw,dd) {(dw,dd'))
= fi exp{—i(£ — m)}-

flo, d)dddw

Note that in the case m = 0, G(w) is not affected
by the presence of scattering [since Cy(w) = 1] and
hence the results of the previous section are indepen-
dent of this type of correlation in the observed signals.

PRACTICAL CONSIDERATIONS

Consider a practical array with p seismometers
equally spaced on a circle. Obviously, the integral
definition of the circle signals cannot be used and
instead a finite sum must be formed. If we let the
polar coordinates of the seismometers be (v, 2map™'),
a=1,2,..., p, then the mth order circle process
will be

»
V@) =pt Y z(t,r.2map ')~
a=1
- exp{—i2mmap'}.

This need only be calculated for m= —4p, ..., ip
since a form of directional aliasing will occur, and

ym(tJ = 2 ym+pk(t)
k
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= fw 2 exp{—iwt} J iplrk(ow)] -
-2

’ Cm+pk(w)d€m+pk(w)~

However, J,(x} tends to zero very rapidly as n tends
to infinity so that this aliasing will not be significant
for reasonable values of p except at those frequencies
where J,[rk(w)] is close to zero. At those fre-
quencies, the higher order aliased terms will dominate
and confuse the results.

We now consider the bivariate signal [x,(f),
¥ {(£)]. This may either be analyzed in real time using
narrow-band filters or alternatively be recorded and
processed using the fast Fourier transform. Either
way, an estimate of the spectral density matrix G(w)
can be obtained (see, for example, Koopmans, 1974).
Using this estimate of G(w) we may define the
following functions:

the mth order circle coherence,

oplw) = |G12(w){ [G11(®) Gap(w)]7Y2,
the mth order circle phase,

0, (w) = phase G, (w),
and the mth order scatter function,

Sw(w) = Gp(0)/G(w).

Observe that asymptotically (as the spectral density
estimates tend to the true values) o, (w) approaches
|fn(w)|/ fo(w), 6, approaches phase [C,(w)]+
phase [ f_.(w)], and S, (w) approaches J,,[rk(w)]?
|Con(w)|*. Unfortunately, it is not possible to esti-
mate the phases of f,,(w) and C, (w) separately since
the unscattered process is not observed. The following
examples will demonstrate the usefulness of these
functions.

Example 1

The first example worth considering is that of a
single signal arriving from direction ¢, observed
without scattering. Then

fw, $) =fw)8(¢ — b,
and
W(w, y) =3(),
where § is the delta function. This gives
folw) = flw),

fn(w) =flw) [ exp{—im} 8(d — ¢o)dy
=flw) exp{—imeq},

and

C,lw)=1.
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The asymptotic values of the functions o, 6,
and §,, are given by

Tpm(w) =1,
0m ((U) = _md)l)*

and
Smlw) =T (rk(w))?.

In practice these functions can be calculated, and
it would be easy to decide if they are of the above
form. If so, the direction of the signal can be easily
estimated from 6,(w). It is interesting to compare
this method with virtually all other methods of finding
directions of signals. Most of them involve finding
the maximum of some function (an estimated wave-
number spectrum, for example) while the above
method only requires evaluation of an explicit
function.

Example 2
If two signals are present, the problem is much
more difficult. We would have

flw, ¢) =f(w) 8(d — ¢1)
+ g(w) 8(¢ — ¢,),
folw) =f(0) + glo),

and

fn(w) = f(w) exp{—imd,}
+ g(w) exp{~imd,}.

The functions o, 6, and S,, will now be hard to
interpret. However, it is obvious that o, (w) <1,
m # 0 at most frequencies, and in practice this could
be used as an indication of the presence of more than
one signal.

Example 3

If the scattering function is simply assumed to be
real and symmetric about zero, then the situation is
only slightly modified. In this case the coefficients
C,, are real and C,,(w) = C_,(w), and the functions
om(w) and 6,,(w) will be unchanged. The presence
of scattering will be demonstrated by the change in
S, (w). If the function has a smooth broad peak at
zero, it will usually be found that |C,, (w)| <1 for
m# 0, and consequently S,,(w) will be small for
m # 0. In general, small observed values of S,,(w)
will imply a high degree of scattering.

CONCLUSIONS

This paper developed first a physical interpretation
of the spectral representation of stationary process
to provide a context in which earlier results of Aki
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could be analyzed. It was then possible to obtain an
alternative method of estimating wavenumber func-
tions and a test for the validity of the methods.

The second part extended the methods to obtain
directional information from the data. This was done
by deriving explicitly defined functions which are
often readily interpreted. This is in contrast to almost
all other methods of array processing which require
nonlinear maximization of functions and which do
not identify correlations between waves from differ-
ent directions. The appropriate context for these
methods appears to be in obtaining a quick analysis of
data, and as a starting point for more refined methods.
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