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High-Resolution Frequency-Wavenumber
Spectrum Analysis 7

J. CAPON. MEMBER, IEEE

Abstract—The output of an array of sensors is considered to be a
homogeneous random field. In this case there is a spectral representa-
tion for this field. similar to that for stationary random processes,
which consists of a superposition of traveling waves. The frequency-

- wavenumber power spectral density provides the mean-square value

for the amplitudes of these waves and is of considerable importance
in the analysis of propagating waves by means of an array of sensors.
The conventional thod of freq y-wav b power
spectral density estimation uses a fixed wav ber wind and its
-esolution is determined essentially by the beam pattern of the array
af sensors. A high-resolution method of estimation is introduced
rhich ploys a waver ber window whose shape changes and is a
function of the wavenumber at which an estimate is obtained. It is
shown that the wavenumber resolution of this method is considerably

" better than that of the conventional method.

Application of these results is-given to seismic data obtained from

"~ the large aperture seismic array located in eastern Montana. In addi-

tion, the application of the high-resolution method to other areas,
such as radar, sonar, and radio astronomy, is indicated.

INTRODUCTION

HE USE of an array of sensors for determining the

properties of propagating waves is of considerable

importante in many areas. As an example, such
phased arrays find application in radar. where an array of
receiving antennas 1s used to determine the spatial coor-
dinates of radar targets. In seismic applications. the large
aperture seismic array (LASA) [1] located in eastern
Montana. is used to determine the vector velocity of prop-
agating seismic waves. In addition. LASA provides seismic
data for facilitating the discrimination between earthquakes
and underground nuclear explosions.

The present work will be concerned with the use of an
array of sensors to determine the vector velocity of prop-
agating waves. In particular. the heavy emphasis will be on
the seismic application based on seismic data obtained
from LASA.

It 1s well known that a stationary random process can be
characterized by means of a spectral density function [2].
Roughly speaking. this function provides the information
concerning the power as a function of frequency for the
stationary random process. In a similar manner, propa-
gating waves, or a homogeneous random field. can be char-
acterized by a frequency-wavenumber spectral density func-
tion. Loosely speaking. this function provides the informa-
tion concerning the power as a function of frequency and
the vector velocities of the propagating waves. The defini-
tion and properties of the frequency-wasenumber spectrum
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will be given subsequently. However. the main purpose of
the present work is to discuss the measurement. or estima-
tion, of the frequency-wavenumber spectrum. Previous
methods of estimation were based on the use, at a given
frequency. of a fixed wavenumber window. These conven-
tional methods were limited to a wavenumber resolution
which was determined primarily by the natural beam pat-
tern of the array, as will be shown subsequently.

" A high-resolution estimation method will be introduced
which is based on the use of a wavenumber window which
is not fixed, but is.variable at each wavenumber considered.
As a c-:-;ﬁsequence. it will be shown that the wavenumber
resolution achievable by this method is considerably greater
than that of the conventional method and is limited pri-
marily by signal-to-noise ratio considerations. The high-
resolution method will be illustrated by examples obtained
using LASA data consisting of long-period noise. long-
period Rayleigh surface wave events. and short-period
noise. Appf’canons of the high-resolution method to other
areas. such as radio astronomy. will also be indicated.

DEFINITION AND PROPERTIES OF THE
FREQUENCY-WAVENUMBER SPECTRUM

We assume that the output of a sensor located at the
vector position x; is a wide-sense stationary discrete-time
parameter random process with zero mean, "\'m, m=0,
+1. £2.---. The covariance matrix of the noise is given by

pﬂ'“n n) = E; \jm‘r\i:,: “}
where E denotes expectatiamilibe cross-power spectral den-

Sty 1S

Sl =3 pilmye™ (2)
and
" i @A
f’j:{mlz [ fﬂ(ﬂ,l('-' maﬁ' (3)

where ~=2nfT i1s the normalized frequency. f is the fre-
quency in hertz and T is the sampling period of the data
in seconds.

If the sensor output field 1s space stationary, then for
fixed %, f;{(~) depends only on the vector difference x;— x,.
In this case the sensor outputs are said to comprise a homo-
geneous random field. cf. Yaglom [2. pp. 81-84] and it is
convenient to introduce a cross-power spectral density
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(4. r) and cross-covariance p(m, r) as
flar) = fil2). (4)
plm.r) = p;(m). (5)

whenever x;,—x,=r.
Following Yaglom. [2. pp. 81-84]. any homogeneous

random field has a spectral representation
=

Ni=

Jm

*ax x
' [ gTimaThex () dk) (6)
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where k is the vector wavenumber. We have that Z(As. Ak)
is a random function of the frequency interval Az and the
elemental wavenumber area, or interval Ak, with the follow-
ing properties:

1) E{Z(A4, Ak)} =0, for all AL Ak;

2) Z(Ai, Ak + A k)= Z(AL, A k) + Z(A4, Ask), if Ak and
A,k are disjoint intervals, and Z(A,A+A,4 Ak)
=Z(A,/, Ak)+ Z(A,/, Ak)if A,/ and A,/ are disjoint
intervals ;

3) E{Z(A i A K)Z¥(A,0. Ayk)} =0, if Ak and Ak are
disjoint intervals, or if A,/ and A,/ are disjoint in-
tervals;

4) E{|Z(A%, AK)|*}=P(i, k) (AL/2m) Ak, Ak,

where P(/. k) is the frequency-wavenumber power spectral
density function and 2mnk,. 2nk, are the x. y components,
respectively, of the vector k in radians per kilometer. It
should be noted that Z(A/. Ak) is a random function with
uncorrelated increments. where the increments can be
taken either in frequency . or in vector wavenumber k.
The cross-covariance and cross-power spectral density can
be writlen as

- ~ ~

E ’ . T o
pimr) = | | | Pl ke ik, ()

el - R ¢ ot

x [
fla,r)= [ ‘ P, ke ® rdkdk (8)

=X

It is possible to write the frequency-wavenumber spectrum
as

”™ .

Pi.. k)= E l [ pim. r)eitmé k "dl‘xdi‘_‘.
m=—m,) - J-a {9;

foo

=j ‘ f G re™ "dr dr.,

] — o

where r_, r. are the x. y components, respectively. of the
vector r. in kilometers.

If the signal consists of a unity amplitude monochromatic
plane wave propagating with a velocity, v, km’s, of the
form exp [—i2nfymT +ko-r)} m=0. £1, =2 ---. where
fo is the frequency. T is the sampling period. ko= 27 foato.
—a, is a slowness vector which points in the direction of

. propagation of the wave, and 1a0|= 1/v,. then

(2r) ' f(hr) = exp [ —iko r]O(4 — 4

sl dp oo heant M

(2m) " P2 k)

87 — i) exp [ilk — ko) r]drdr,

Il
2
u

P ol

Jor k — ko)

= dlr —

which is a delta function located at the frequency -, =2nf,T
and wavenumber k. It should now be apparent how P{.. k)
provides the information concerning the speed and azimuth.
or vector velocity, of propagating waves.

CONVENTIONAL METHOD FOR ESTIMATING
FREQUENCY-WAVENUMBER SPECTRUM

We now assume that K sensors are 1o be used to estimate
the frequency-wavenumber spectrum P{.. k). Such an esti-
mate is usually based on an estimate for the cross-power
spectral density f;(4). For simplicity, only the direct seg-
ment, or block averaging, method of estimation will be
considered for estimating f;(4). It has been shown [3] that
this method is very desirable from the point of view of com-
putational efficiency. There is also no essential loss of gener-
ality in considering a specific estimation method for f;(/).
In the direct segment method the number of data points L
in each channel is divided into M nonoverlapping blocks of
N data points, L=MN. The Fourier transform of the data
in the nth segment, jth channel, and normalized frequency
/18

N
S = (NS ¥

m=

Nj-mﬂn- 111\‘55!—“’: ji= LK (10)

alﬂ'
: i e M
The a,, are weights which are used to control the shape of the
frequency window used in estimating f;(~). Again. for
simplicity. we assume a, = L. m=1.---. N. As an estimate for
fa(2) we take

T =25 Y Su0SEa. gl=1o K (D)

n=1
We will assume hereafter that a normalization is performed
by dividing f;(4) by [ f;(2) fu(#)]' 2. in order to remove the
effects of improper sensor equalization. We can. without
any loss of generality. ignore this step in the ensuing analysis.
As an estimate for P(.. k) we take

i ] X i ;

PU.k)= o5 Y wpwtfylapt e (12)

=1

where the w; are weights which are used to control the shape
of the wavenumber window used in estimating P(~. k). We
will assume. for simplicity. that w;=1, j=1.---, K. It has
been shown that {f,(4)] is a nonnegative-definite matrix
so that P(/. k) will be real and nonnegative [3].

It will now be shown that P is an asymptotically unbiased
and consistent estimate for ¢P where ¢ is some positive
constant. Using the results of [3] for E{ f,(#)] we get
=

E[pl}-‘kn): = [ [ P(x. k) Btk — koﬂz

o i 8 e ¢

: i (13)
| Wa(x — AP % dk dk,
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where |Wy(x)]? is the Bartlett window

1 1sm (N/2)x}?

Wy(x)|? — (14)
) T NI smrl 2)x '
and |B(k)|* is the beamforming array response pattern
Ik -
Bk)=—= ) &&= (15)
K =

Thus, E{P(/. k,)} is obtained b\ means of a frequen(,y-
wavenumber window |Wy(x—24)*. |B(k—kg)]>. Hence, P
will be an asymploucall_\ unblased estimate famcP if
|Wy(x—4) -B (k —k,)|* approaches a delta function in such

~ - a way that

I J. j |Wy(x — 4)- Bk — ko}lzg—dk,dk,, =c

Jsing the results of [3] we can compute the variance of P
is a multidimensional Gaussian process,

: 1 o <

VAR {P(i, ko)) = o7 (E[P(/. ko)]}?
1

+ s

wl L1 L

- P(x. k)B*(k — ko)B(k + k)

- Wilx — /]|2-dkxdk

ri

Thus,

P L, a . ,
VAR {P(i. ko)) = N (E[P(2. ko)]}2.  |ko| # O

(16)

5
ﬁ (E[P(%. ko)]}. kol = 0.
Since the variance of P approaches zero as M approaches
infinity, it follows that P is a consistent estimate for cP.

We follow Blackman and Tukey [4] and assume that
P(i. ky) is a multiple of a chi-square variable so that to
establish confidence intervals the chi-square distribution
can be used with the number of degrees of freedom k given by

k = 2{E[P(4 ko)]}?/VAR [P(i. ko)]
= 2M, |ko| # 0 (17)
.M._ Ik0| — 0..

if M =36, k=72, and the 90 percent confidence limits are
approximately + 1.2 dB, and if |ko|#0. When |ko|=0, these
limits are approximately + 1.6 dB.

I

Hi1GH-RESOLUTION METHOD FOR ESTIMATING
FREQUENCY-WAVENUMBER SPECTRUM

The high-resolution estimate for P(. k) is defined as

K 2y
P'(i k) = LZ 4u(2) exp [ik - (x; — x;)]] (18)
=1

where {g;(4)} is the inverse of the spectral matrix { f;(4)}.
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The motivation for 1h1< procedure can be given by writing
(18) as

K
Pirk)= Y ArG.kA(Lk f(2)exp [ik-(x; — x,)]
qd=1
1 M|k I
S ﬂ__T_] _E AN KIS, (2) exp [ik - x;]
where
K
Y gpls k)
Ak =1 (20)
Z Qﬁ(/ L}
JJa=1
and {g;;(4, k)} is the inverse of the matrix {exp [ik-(x;

—x,)] fu(7)}. Thus, P'(4, k) is the power output of an array
processor, known as a maximum-likelihood filter, whose
design is determined by the sensor data and is different for
each wavenumber k,. which passes undistorted any mono-
chromatic plane wave traveling at a velocity corresponding
to the wavenumber k, and suppresses in an optimum least-
squares sense the power of those waves traveling at velocities
corresponding to wavenumbers other than k. cf. [3. (122
and (123)]. It should be noted that the amount of computa-
tion required to obtain P’ is almost the same as that to get
P. since only an additional Hermitian matrix inversion is
required.

We now wish to compute the mean and variance of P'.
In order to do this we assume that M. N are large enough so
that as an approximation we may replace _f’i({/'_} by fi4{4)
in the definition for 4 (/. k) in (20). This then implies that
the weights 4 (4. k) are not random and can be replaced by
their expected values. This-1s a simplifying assumption.
which is not actually valid, since these weights are designed
from the data. However, it does appear to be a reasonable
approximation. Using-this assumption we have

=z {foo fa

E{P'(;, ko)) = P(x, k)|Wy(x — 2)

voRJ—m) -

(21)
-B'(7.. k. LO)*’ = dL,dL

Vi o

where

B/ k. ko) = T A7 ko) exp [itk — ko) x;]. (22)

_;:

It should be noted that the functional form. or shape, of B’
changes as a function of the wavenumber k, Thus,
E{P'(i. kgy)} is obtained by means of a frequency-wave-
number window |Wy(x — 7)- B'(. k. ko)|>. Hence. P’ will be
an asymptotically unbiased estimate for ¢P if |[Wy(x—2)
- B'(4. k. ky)|* approaches a 3-dimensional delta function
in such a way that

jj J [W(x—/]szk0}| = dkodk, = ¢ (23)

-%

where c is some positive number.
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The variance of P’ is, assuming (N} is a multidimen-
sional Gaussian process,

VAR (P'(;. ko)) = ; (E[P'G.ko)]}? + Tf‘ ||

o TR i

(24)

“P(x.k)B'*/. k. ky)B'(2. k. — k)
o, dx
Wax — 27 5 dk dk,.
Thus.
1 s )
VAR (PG ko) = o (E[P (i ko)) kol % 0

‘ {25)
2 )

= Ei' {E[Pr(f... ko}]}z, ikol = 0

The confidence limits for P’ can be obtained in a manner
similar to that for P described previously.
It will now be shown that the wavenumber resolution
sing P’ is higher than that obtained by using P. We assume
that a single plane wave is propagating across the array of
sensors and that a noise component 1s present in each sensor
which is incoherent between any pair of sensors. If M. N are
large. then the spectral matrix is given by

fulho) = 8p(R)exp [—iko " (x; — x))]. jl=L1---.K (26)
where
5ﬂ[12}== L

1 - R,

j=1
j# (27)

R is the ratio of the incoherent noise power to the total
power of the sensor output. k, =27 foa. f; is the frequency.
so=2nf,T. T is the sampling period. —a is the slowness
vector which points in the direction of propagation and has
magnitude |a| = 1/v. v is the phase velocity of the propagating
wave. Hence, using (12) we have

R

P(iy. k) = (1 — R)|B(Aky)* + - (28)

where
Aky = k — k. (29)

If we denote the matrix given in (26) by F. then

— o - (£

[P k)]~
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matrix whose j 1th element is exp [ —iky - x;]. Now we
have the following matrix inversion formula

[ g R A 1 4'q
(1-R)qgq+ I = -— |61
\ 1—R ) R R

1 —R
so that using (18} we have
R __] — R +(R/K)

Plg k)= — —— S
M =KT_R+ ARK) - Pig K)

If k=k,. then

Plig. ko) = P'lig.kg) =1 — R + e
K
In the vicinity of k =k, we consider that power contour. or
those values of k, for which f’(}.g. k)=1—R. which is still
very close to the peak value of 1—-R+(R/K), since R is
small. between zero and unity, and K is large. usually about
20. For these values of k we get P'(/,. k)=%1— R+ R/K),
so that P’ is already 3 dB down from its peak value of
1—R+R/K. Hence. the wavenumber resolution using P’
will be much higher than that obtained with P.
We now assume that there are two independent and
random plane waves propagating across the array of sen-
sors, plus incoherent noise. so that the spectral matrix is |

(34)

(33)

F =419, + g5, + RI

where ¢,. g, are 1 x K row matrices whose 1 jth elements
are, respectively. b, exp [ik, x;] and b, exp [ik, x;]. and
bi+b3+R=1. We now have

g (35)

Pro- k) = 3 b3|B(AK)P +

J=1

>

where Ak;=k — k.

In order to find an expression for P'(~. k} we note the
following matrix inversion formula

[(RI + 41q)) + 424:]" = (RI + ¢1g,)""

. (RI + 414,)""9245(RI + ¢'q,)"’
' 1 + g5(RI + 419,)"'q}

(36)

Using this formula. as well as that given in (31) we obtain

S G ' - LK
b3|B(Ak,)|* — m Re {B(Ak,)B(Ak,,)B*(Ak,)} + bib3|B(Ak,)B(Ak,,)|* R Kb2P
: S : 3
1 K(’bﬂ Kb;’hg!BIAk“li‘\) B
+={bt -2 =2
R\ - R + Kbj
. R where Ak, =k . —k, and
F=(1-R)qgq+ I} (30) :
1-R b2 + R
R 17K :
x _ o ‘ Pl = ey G 1,9, 18R
where [ is the K x K identity matrix, g isa I x K row matrix K b? + 2R Piic. k)
1 jth element is exp [ik, - x;] and ¢'isa K x 1 column R e
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s N 2| 2 R
P70 k) = b3|BAK )P + —-

ji= T

(39)

Thus Pjis the high-resolution frequency-wavenumber spec-
trum obtained when only the jth propagating wave. plus
incoherent noise. is present. In the vicinity of k=k, we
would like P'= P;. Hence, the second term in (37) represents
an undesired error term in this region which we would like
to be as small as possible. It can easily be shown that this
error term will be small compared to 1/P; if

b3[R + Kbi(1 — |B(Ak,,)|*)]

R , (40)
>> R|B(Ak,,)[’b3 — E(R + Kb?). o0

“In most cases R/K will be very small so that we may write
{40)as.

2 5 |B{Ak12)!2 .
12> X 1 [Blak,,)P

This inequality will be satisfied if either R/K is small,
|B(Ak,,)? is small or both of these quantities are small. It
should be noted that |B(Ak,,)|* will be small if the wave-
number k, corresponding to one of the propagating waves
is sufficiently different from the wavenumber k, of the other
propagating wave. In this case the two propagating waves
+ can be resolved in wavenumber by the natural beam pattern
i of the array of sensors, |B(k)|*. However, if [B(Ak ,)|? is not
¥ too small, so that the natural beam pattern can not resolve
the two waves, it is still possible for the high-resolution
method to resolve the two waves if R/K is small and
|B(Ak,,)|* <1. Thus. we sec the advantage of the high-
resolution method over the conventional method of fre-
quency-wavenumber spectrum analysis. In a similar manner
we may show that in the vicinity of k=k,. P'= P, if

b (41)

b s> R Bk

s £ ~ 2
277 K 1 - [BAk,,)]? (42)

Thus, we have shown that a certain type of linearity holds.
ig,;

P, k) = Y Plio k)

j=1

(43)

In other words, the high-resolution spectrum of the sum
of two propagating waves, plus a small amount of inco-
herent noise, is the sum of the high-resolution spectra for the
individual waves, as indicated in (43). This result may be
extended to the case of M propagating waves, but the
precise conditions for the linearity to hold become cumber-
some to derive. It has been found experimentally that
linearity will hold if there is sufficient wavenumber separa-
tion between the propagating waves and if the beam pattern
|B(k)|* is reasonably good.

The high-resolution estimate is based on the inverse of the
estimated spectral matrix, cf. (18). Therefore, the problem of
whether this inverse exists is extremely important. As men-
tioned previously, it has been shown that {f;(4)} is a non-
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negative-definite matrix when the block averaging method
of spectral estimation is used [3]. However. this is not good
enough to insure that the inverse of the spectral matrix
exists. That is. it must be shown that the spectral matrix is
positive-definite in order that its inverse exist.

In fact. if the number of blocks M 1s less than the number
of sensors K. then the spectral matrix 1s of order K. but only
of rank M at most and is thus singular. This can be seen by
writing the spectral matrix F as

M

F= 3 q.4.

n=1

(44)
where ¢, is a 1 x K row matrix whose 1 jth element is
N . -
Y Nim+w-we™
m=1

Thus, F is the sum of M matrices each having rank unity,
and the rank of F cannot exceed the sum of the ranks,
namely M. Hence, F has rank M at most and, if M <K,
F must be singular. Therefore, a necessary, but not sufficient,
condition for F to be nonsingular is M > K. As a practical
matter, it is found that whenever M > K. F will be non-
singular, providing there is reasonable data in each block.
However, in some cases it is not possible to obtain K or
more data blocks. This situation arises, for example, when-
analysis of transient signals is desired whose time duration.
unlike that of the noise. is very short. In order to make the
spectral matrix nonsingular a small amount of incoherent
noise is added. This is accomplished by modifying the
matrix F given in (44) into the matrix F' given by
F'=(l — R)F + RI (45)

We now show that F’ is positive definite. and thus non-
singular.

Consider the quadratic form @ associated with the
matrix F’
K K 2
Q= Y ) amatfuld)
j=1 I=1
. M | K M oy
= E" El El E] ajNJ'.m— :n—1|_=\.'<'5'm"i_" (46)
et e e
K o
-Ri]urf2 —-n<s=<m
=
Now. if @ =0. we must have
K
¥ g =0, (47)
j=1

since the first term in (46) is always nonnegative. However,
(47) implies that a;=0. j=1.---, K, which proves that F’
is positive definite.

APPLICATIONS TO SEISMIC DATA
We now wish to describe the application of the conven-
tional and high-resolution frequency-wavenumber spec-
trum estimates to seismic data obtained from LASA. The
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Fig. 1. General arrangement of the large aperture seismic array.
TABLE |
PARAMETERS USED IN MEASUREMENT OF FREQUENCY-WAVENUMBER SPECTRUM
< 3 s o : 90° Added
Sampling Array Nominal ~ Number of Frequency 5 20
DATA Rate Aperture  Number of Samples per Resolution | umbe_r o Cnnﬁd?m" oy
i g : : . Blocks=M Limits Incoherent
(Hz) (km) Sensors=K  Block=N (Hz) g
(dB) Noise = R
LPZ noise 1 200 21 100 0.01 36 +1.2 0
LPZ Rayleigh surface-wave event
2ntire wave) 1 200 21 100 0.01 36 = 0
Z Rayleigh surface-wave event
(200 seconds at a time) 1 200 21 100 0.01 2 - 0.05
25 100 0.10 36 +:1:2 0

SP noise 10 36

LASA consists of 21 subarrays of 25 short-period (SP)
vertical seismometers as indicated in Fig. 1. At the center of
each subarray there is a three-component set of long-period
(LP) seismometers oriented in the vertical (Z). north-south
(NS). and east—west (EW) directions.

As mentioned previously, a direct segment. or block aver-
aging. method of spectral estimation was employed. The
weights a,=1, j=1.---. N were used. cf. (10) so that a
Bartlett frequency window was used in the spectral estima-
tion [4]. The seismic data considered was LPZ noise. LPZ
Rayleigh surface-wave events. and SP noise. The parameters
used in the measurement are given in Table I. The results of
the conventional frequency-wavenumber spectrum mea-
surement program are displayed, at a fixed frequency, as
contours of — 10 log [P(4, k)/P ] Vs ky, k,, where P, is

the maximum value of P. The wavenumber coordinates are
in cycles per kilometer. The wavenumber grid on which P
is computed consists of 61 x 61 points. The level of the con-
tours varies from 0 to 12 dB in steps of 1 dB. The display of
the high-resolution results is similar to that of the conven-
tional results with the only exception that the contour levels
are incremented by 2 dB. It should be noted that if a wave is
propagating from the north with a velocity corresponding
to the wavenumber k. then the wavenumber spectrum re-
sults will show a peak at the point k, =0, k,= |k| /27, ie.,
the peak will appear above the origin of the wavenumber
axes.

The transfer function of the LP system is shown in Fig. 2.
The results of both the conventional and high-resolution
frequency-wavenumber spectrum measurements for LPZ

o A B A ¢

]
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Fig. 2. Long-period system transfer function.
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noise are shown in Figs. 3 and 4 for two different noise sam-
ples taken on 7 April 1967 and 26 January 1967. respec-
tively. These figures show that the conventional and high-
resolution results are in agreement as both methods tend to
show strong peaks occurring at the same wavenumber in
each program. However. the high-resolution method de-
¥ ates the frequency-wavenumber spectrum much more
ciearly than the conventional method. especially in the
suppression of the sidelobe level. This is demonstrated quite
well in Fig. 4 which shows a 360° azimuthal spread for the
wavenumber structure with a variable power density along
this circle. This is. of course, exactly what would be expected
since the dispersion curve of the LPZ propagating seismic
noise has been measured and found to correspond to that of
a fundamental mode Rayvleigh wave [5]. This implies that
at a given period the phase velocity of the propagating noise
at LASA must be constant, independent of the location of
the sources of the noise, and thus its frequency-wavenumber
spectrum must consist of an arc, or arcs. whose extent cor-
responds to the range of the azimuths of the noise sources.

The results of Fig. 3 show the noise consists essentially
of a single wave propagating from the north. In this case the
conventional result should appear essentially the same as the
beam pattern of LASA, with the peak of the beam pattern
occurring at the wavenumber corresponding to the vector
velocity of the propagating wave. That this is indeed the
case can be seen by comparing Fig. 3 with Fig. 5 which

shows the beam pattern of LASA. It should be noted that
frequency-wavenumber spectra were computed for a the-
oretical model of the LPZ noise and showed excellent agree-
ment with the measurements obtained using the actual
LPZ seismic noise data. We also mention that the computer
running time to produce a pair of plots, such as is shown in
Fig. 3. 1s approximately 10 minutes using the IBM 360/67.

Another application of interest is to LPZ “Rayleigh
surface-wave events. In this case the propagating waves are
transients, in time, and the field of sensor outputs cannot be
considered as a homogeneous random field, as is the case
with propagating seismic noise waves. Therefore. the
frequency-wavenumber spectrum must be redefined in this
case. Towards this end consider the time correlation func-
tion

T A
pidm) = LIMITQ Y NN«
A=x =T n=-4

The spectral densities f;(4). f(4, r) are defined in the same
manner as previously, cf. (2), (4), respectively, and the fre-
quency-wavenumber spectral density P(.. k) is also defined
as previously in (9). The measurement of P(.. k) is still done
by the direct segment method as indicated in (12) and (18).
This represents an approximation which produces reason-
able results.

The frequency-wavenumber spectrum was measured for
the 21 November 1966 Kurile Islands event whose param-
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TABLE I
PARAMETERS FOR 21 NOVEMBER 1966 KURILE ISLANDS EVENT

21 November 1966

Date:
Region: Kurile Islands
Origin time: 12:19:27
Latitude: 46.7T N
Longitude: 152:5E
Distance: 64.3
Azimuth: 32
Depth: 40 km
Body-Wave Magnitude: 6.0
o3 et
D4 A ot o
o1 S
e et
3 ik '
" pa— A e
R
Fit ey =
82 ittt At e E2 A Rl
3 ettt - om st
1245 20 2% 1300 1305 130 38 4s 1250 1285 1300 1305 130 1315
21 NOV 66

KURILE ISLANDS EVENT

Fig. 6. The long-period waveforms for 21 November 1966
Kurile Islands event.

*

eters are given in Table II. The LPZ Rayleigh surface waves
of this event are shown in Fig. 6. The results obtained by
measuring the frequency-wavenumber spectrum over the
entire LPZ Rayleigh surface-wave train. as indicated in
Table I, are given in Fig.-7 for frequencies of 0.03, 0.04,
0.05 Hz. It is known that the beating, or modulation, of the
avelope of these surface waves. as shown in Fig. 6. is caused
by multiple path propagation, especially at shorter periods,
of. [6]-[8]. This multipath propagation effect is shown
quite clearly at 0.04 Hz where two peaks are resolvable. One
peak is at an azimuth corresponding to the initial wave
arriving along the great circle path between LASA and the
Kurile Islands, while the ather peak shows the later multi-
path arrival propagating from the northwest.
In order to determine the time delay between the multi-
path arrivals at LASA, for the 25-second period group, the
: frequency-wavenumber spectrum was measured over suc-
l cessive 200-second-long blocks of time, as indicated in
Table I. The results are given in Fig. 8. which. for simplicity,
shows only the high-resolution results. Fig. 8(a) shows that
the initial 25-second period group arrives from approxi-
mately the azimuth of the event, while Figs. 8(b)—(d) show
the later arrivals coming from a more northerly direction.
The time delay between the multipath arrivals appears to
be about 200 seconds, since the emergence of a secondary

- for these waves at the 25-second period is about 3.3 km/s so
that a path length difference of about 660 km or 6 degrees

peak to the north is visible in Fig. 8(b). The group veloeity -
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Fig. 7. Conventional and high-resolution frequency-wavenumber spectra
for 21 November 1966 Kurile Islands event: 12:40:00 to 13:40:00.
(a) Frequency=0.03 Hz. (b) Frequency=0.04 Hz. (¢} Frequency
=0.05 Hz.

exists between the two multipath arrivals. Similar results
have been obtained by Evernden by measuring phase ve-
locities with a tripartite array [7]. [8]. In addition. Evernden
gives a theory to explain the causes of the multipath propa-
gation of Rayleigh surface waves.

We now discuss the application of our results to SP noise.
The transfer function of the SP system is shown in Fig. 9.
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. The results of both the conventional and high-resolution
frequency-wavenumber spectrum measurements for SP
noise are shown in Fig. 10 for a noise sample taken on
4 February 1967. The array of SP seismometers used in this
measurement is shown in Fig. 11 and the beam pattern for

s array is shown in Fig. 12. The results of Fig. 10 show
it at 0.2 Hz the SP noise consists of two components, a
a-velocity body wave whose horizontal phase velocity
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Fig. 10. Conventional and high-resolution frequency-wavenumber spec-
tra for | February 1967 shori-period noise sample: 08:03:00 to
08:09:00. (a) Frequency=0.2 Hz. (b) Frequency=0.6 Hz. (c) Fre-
quency = 1.0 Hz.

1s about 13.5 km/s and a low velocity surface wave whose
phase velocity 1s about 3.5 km/s. At frequencies of 0.6 Hz
and 1.0 Hz the SP noise consists primarily of body waves.

CONCLUSIONS

The estimation of the frequency-wavenumber power
spectral density is of considerable importance in the analy-
sis of propagating waves by an array of sensors. The con-
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ventional method of estimation employvs a fixed wavenum-
ber window. and, as a consequence. the wavenumber resolu-
tion is determined essentially by the natural beam pattern
of the array of sensors. The high-resolution method of esti-
mation employs a wavenumber window whose shape, and
thus sidelobe structure, changes and is a function of the
wavenumber at which an estimate is obtained. In addition,
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this change in wavenumber window shape is performed in
an optimum manner, as pointed out previously. As a conse-
quence, it has been shown that the wavenumber resolution
of this method is determined primarily by the amount of
incoherent noise which 1s present in the array of sensors,
and, to a lesser extent. by the natural beam pattern of the
array.

The experimental results show a considerable improve-
ment of wavenumber resolution of the high-resolution
method relative to the conventional method. In the case of
LPZ seismic noise there was an improvement of about a
factor of four, cf. Fig. 3. Thus. the high-resolution method
is extremely useful for the estimation of the frequency-
wavenumber spectrum when the incoherent noise power is
relatively small compared to the power of the propagating
waves.

The high-resolution method would, of course, be useful
in applications other than seismic arrays. We now mention
briefly the application of the method to radio astronomy.
It 1s now possible to synchronize the outputs recorded at
several radio astronomy telescopes [9]. Thus, these tele-
scopes can be considered as sensors in an array, (cf. [9,
Fig. 1]). If the incoherent noise power in each telescope is
sufficiently small. i.e.. the radio signals from distant stars
recorded by the telescopes should be coherent and there
should be relatively little incoherent background noise
power, then the high-resolution method is directly appli-
cable for-the purpose of using this array of telescopes to
map the sources of radio energy.
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