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Abstract- The output of an array of sensors is considered to be a
homogeneous randorn field. In this case there is a spectral representa-
tion for this field. similar to that for stat;onary random processes.

ii'>-. .. which consists of a superposition of traveling waves. The frequency-
o;"wavenumber power spectral density provides the mean-square value

for the ampUtudes of these waves and is of considerable importance
in the analysis of propagating waves by means of an array of sensors.

.. . The conventional. metftod of frequency-wavenumber power
t sPectral density estim8ti.~~ ..fixed wavenumber windowand its

\.esolution is determined essentiany by the beam pattern of the array

~ sensors. A high-resolution method of estimation is introduced
.- ~ich employs a wavemlmber winllow whose shape changes and is a
-.' function of the wavenumber at which. an estimate is obtained. It is

shown that the wavenumber resolution of this method is considerably
;. " better than that of the conventional method.

Application of these results is.given to seismic data obtained from
~ the large aperture seismic array located in eastern Montana. In addi-

tion. the application of the high-resolution method to other areas.
such asredar. sonar. and radio astronomy, is indicated.

Ir-.'TRODUCTION

THE USE of an aITay of sensors for determining the
properties of propagating waves is of considerable
important:e in many areas. As an example, such

phased arrays find application in radar. where an array of
receiving antennas is used to determine the spatial coor-
dinates of radar targets. In seisrnic applications. the large
aperture seisrnic array (LASA) [l] located in eastern
Montana, is used to determine the vector velocity of prop-
agating seismie waves. In addition, LASA provides seismic
data for facilitating the discrimination between earthquakes
and underground nuclear explosions.

The present work will be concerned with the use of an
array of sensors to determine the vector velocity of prop-
agating waves. In particular, the heavy emphasis will be on
the seismic application based on seisrnic data obtained
from LASA.

lt is weil known that a stationary random process can be
characterized by means of a spectral density function [2].
Roughly speaking, this function provides the information
concerning the power as a function of frequency for the
stationary random process. In a similar manner, propa-
gating waves, or a hornogeneous random field, can be char-
acterized bya frequency-wavenumber spectraI density fune-
tion. Loosely speaking, this function provides the informa-
tion concerning the power as a function of frequency and
the veetor velocities of the propagating waves. The defini-
tion and properties ofthe frequency-waw&Dumberspectrum
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will be given subsequently. However, the main purpose of
the present work is to discuss the measurement, or estima-
tion, of the frequency-wavenumber spectrum. Previous
methods of estimation were based on the use, at a given
frequency, of a fixed wavenumber window. These conven-
tional methods were limited to a wavenumber resolution
which was determined primarily by the natural beam pat-
tern ofthe array, as will be shown subsequently.

. A high-resolution estimation method will be introduced
which is based on the use of a wavenumber window which
is not fixed, but is..yariable at each wavenumber considered.
As a consequence, it will be shown that the-wavenumber
resolution achievable by this methodis considerably greater
than that of the conventional method and is limited pri-
marily by signal-to-noise ratio considerations. The high-
resolution method will be illustrated byexamples obtained
using LASA data consisting of lon~-period noise, long-
p~iod Rayleigh surface wave events, and sport-eeriod
noise. ApphcatlOns ot the hIgh-resolution method to other
areas. such as radio astronomy. will also be indicated.

DEFINITION AND PROPERTIES OF THE

FREQUENCY -W AVENUMBER SPECTR UM

We assurne that the output of a sensor located at the
vector position Xj is a wide-sense stationary discrete-time
parameter randorn proeess with zero mean, {Njm}, m=O.
::t L :t 2. . . . . The covariance matrix of the noise is given by

pim - n) = ErN. N*1) l )m /n J, (1)

where E denotes expectatiomilihe cross-power spectral den-
sity is

h(i.) =
a:

L pjt(m)E;imi, (2)
m=-O(.

and

p./(m) = f
"

1,. (
'

)
-im;. di.

) )/'.[;-.
-" 2n

(3)

where i.=2nIT is the normalized frequency, f is the fre-
quency in hertz and T is the sarnpling period of the da ta
in seconds.

If the sensor output field is space stationary, then for
fixed i..,ij,(i.) depends only on the vector differenee x j - x/.
In this case the sensor outputs are said to comprise a homo-
geneous random field, cf. Yaglom [2, pp. 81-841 and it is
convenient to introduce a cross-power spectraI density
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f(X, r) and cross-covariance p(m, r) as

f(i., r) = .f)i.).

p(m. r) = p)m).

whenever Xj-x/=r.
Following Yaglom. [2. pp. 81-84]. any homogeneous

random field has a spectral representation

Njm = f"LxocLxoo E-i(mi+kxjiZ(dX. dk)

where k is the vector wavenumber. We have that Z(Lli..L1k)
is a random function of the frequency interval Lli. and the
e1emental wavenumber area, or interval M, with the follow-
ing properties:

1) E{Z(L1i" L1k)}=0, for all L1)"M;
2) Z(L1i" L11k + L12k)= Z(11)., L11k)+ Z(11).,L1:?k),if L11kand

L12k are disjoint intervals, and Z(L1)),+ L12)., M)
=Z(L1))" M)+Z(L1)., L1k) if L11),and L12),are disjoint
intervals ;

3) E{Z(L1))" L1)k)Z*(L12)" L12k)}=0, if L1lk and L12k are
disjoint intervals, or if L11),and L12).are disjoint in-
tervals ;

4) E{JZ(L1)",MW} = P(A, k)(L1;-f2n) L1k~ky,

where P()" k) is the frequency-wavenumber power spectral
density function and 2nkx' 2nky are the x, y components,
respectively, of the vector k in radians per kilometer. It
should be noted that Z(L1i",L1k)is a random function with
uncorrelated increments. where the increments can be
taken either in frequency i. or in vector wavenumber k.
Tbe cross-covariance and cross-power spectral density can
be written as

p(m. r) =
J~" IX J > P(i", k)r.-i(mi.+kr)~i'dkxdk,

-" .J- X - x _n

.IV, r) = LocxLxoop(i", k)<;-il<rdkxdk)""

It is possible to write the frequency-wavenumber spectrum
as

x'

!

OC

J
x

P(i", k) = m=~ y~. -0< -ocp(m, r)<;i(mHk 'rJdrxdr)'

J

x

f
x

- . ,ik'r

- - x - 0<f(/., r)E dr xdr}.,

where rx, ry are the x, y components. respectively, of the
vector r, in kilometers.

Ir the signal consists of a unity amplitude monochromatic
plane wave propagating with a velocity, va km/so of the
form exp [- i(2n.f~mT + ko' r)1 m=O. ::tI, ::t2. "'. where
Jo is the frequency, T is the sampling period. ko= 2n.f~1%0.
-1%0is a slowness vector which points in the direction of

,;,r'''propagation of the wave, and laol= l/vo, then

(2n)-lf()" r) = exp [ - iko' r]<5(A- AO)
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(4)

(5)

(2n) - ) P(/.. k) = LXx LXx b(i. - i.o) exp [i(k - ko)' r]dr~r,

= Mi. - i.o, k - ko)

which is adelta function located at the frequency i.o= 2n.f~T
and wavenumber ko. It should now be apparent how P(/.. k)
provides the information concerning the speed and azimuth.
ar vector velocity, of propagating waves.

(6)
CONVENTIONAL METHOD FOR ESTIMA TING

FREQUENCY - W AVENUMBER SPECTRUM

We now assurne that K sensors are to be used to estimate
the frequency-wavenumber spectrum P(i...k). Such an esti-
mate is usually based on an estimate for the cross-power
spectral density fj/(),). For simplicity, only the direct seg-
ment, or block averaging, method of estimation will be
considered for estimating .!jp.). I~ has been shown [3] that
this method is very desirable from tbe point of view of com-
putational efficiency.There is also no essentialloss of gener-
ality in considering a specific estimation method for .!j/(),).
In the direct segment method the number of data points L
in each channel is divided into M nonoverlapping blocks of
N data points, L = MN. The Fourier transform of the data
in the nth segment, jth channel, and normalized frequency
X,is

N

S (
'
) (N

'

)-1!2" N imi.
jn" = 'L am j.m+ (n-I)N<;

m=1
.I = 1."', K (10)

n=1."',M.

The amare weights which are used to control the shape ofthe
frequency window used in estimating .fjP). Again, for
simplicity, we assurne am= 1,m = 1.. . . . N. As an estimate far

'7) fi/(i.) we take

(~\,o~_~~'r M . *..!j/(/.) - I SjnV)S/n(4
M n=)

j. I = 1."', K. (11 )

(8)

(9)

We wi1lassurne hereafter that a normalization is performed
by dividing h/O-) by [ljj().).ft/(i.)]12, in order to remove the
effects of improper sensar equalization. We can, without
any loss of generality. ignore this step in the ensuing analysis.
As an estimate far P(i..k) we take

.. I K -.
P(i.,k) = ~ I WjWffjp)<;'kIXJ-xII

K j./= 1

;1
l
;f
.~"
~
.~
!t(12)

where the Wjare weights which are used to control the shape
of the wavenumber window used in estimating P(}" k). We

will assurne, far simplicity, that Wj= I, j= 1,"', K. It has
been shown that [~P)} is a nonnegative-definite matrix
so that PO..k) willbe realand nonnegative [3].

It will now be shown that Pis an asymptotically unbiased
and consistent estimate for cp where c is some positive
constant. Using the results of [3] far E[h,(i.): we get

E[P(i..kon = f"f-O<oof:",p(X,k)jB(k - koW

-IWN(x- ;,)j2~: dk~k}.

(13)

~ _. ,_. ..~... '."
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where I»-:",(x)j2is the Bartlett window

I 1
2 1

I

sin (N12)x

\

2

WN(x) = - ,
N Isin (1/2)x

t...
i

and !B(kW is the beamforming array response pattern
K

B(k) = ~ L Ci"''''}. (15)
K j= 1

Thus, E{P(/., ko)} is obtained by means of a frequency-
wavenumber window IWN(x-I.w. IB(k-koW. Hence: P
will be an asymptotically unbiased estimate fom cp if
IW~x-l)'B (k-koW approaches a delta function in such
a way that

J
o:

J
OD

J
oo dx

;" -w -«> -«> IW~x - l)' B(k - ko)122n dkxilk,.= c.

1$ng the results of [3] Wecan compute the varianre of P
"as,~assuming {N jm}is a multidimensional Gaussian process,

VAR {P(/.,ko)}= ~ {E[ P(/., kom 2

+ ~II:nl:l:
. P(x, k)B*(k - ko)B(k + ko)

.IWN(x - }.)j2~: dkxilk;12.
..

Thus,

f -. 1 - 1 f [
-.

]12
VAR (P(/.. kO)j = - tE P(/.. ko) J .M !kol"# 0

2 -
= M {E[P(/., ko)]f, Ikol= o.

Since the variance of P approaches zero as M approaches
mfinity, it folIows that Pisa consistent estimate for cP.

We folIow Blackman and Tukey [4] and assurne that
PO.., ko) is a multiple of a chi-square variable so that to
establish confidence intervals the chi-square distribution
can be used with the number of degrees offreedom k given by

k = 2{E[P{}., ko)]f/V AR [P(/,. ko)]

= 2M, Ikol "# 0

= M, Ikol= 0;

if M = 36, k = 72, and the 90 percent confidence limits are
approximately :t 1.2 dB, and if Ikol"#0. When Ikol= 0, these
limits are approximately :t 1.6-dB.

HIGH-RESOLUTION METHOD FOR ESTIMATING

FREQUENCY -W AVENUMBER SPECTRUM

The high-resolution estimate for P(}~k) is defined as

PROCEEDINGS OF THE IEEE. AUGUST 1969

The motivation for this procedure can be given by writing
(18)as .

(14) K

P'(i., k) = L A j(i.. k)A[(i.. k)Jp.) exp [ik . (Xj - Xl)]

j./=l (19 ) .

M I K

I

,

= ~ JI Ij;1 Aj(/.. k)SjnW exp [ik . XjJ -

where

A)/.. k) =

K

I qj/(i.. k)
/= I

K

L qj/(/., k)
j./= 1

(20)

(16)

and kP.., k)} is the inverse of the matrix {exp [ik' (Xj
-x,)].(;,(l)}. Thus, P'(Ä, 10) is the power output of an array
processor, known as a maximum-likeIihood filter, whose
design is determined by th~sensor data and is.different for
each wavenumberko. which passes undistorted any mono-
chromatic plane wave traveling at a velocity corresponding
to the wavenurnber ko and suppresses in an optimum least-
squares sense the power ofthose waves traveling at velocities
corresponding to wavenurnbers other than ko, cf. [3, (122)
and (123)]. lt should be noted thatthe atilount of cornputa-
tionrequired to obtain P' is almost the same as that to get
P, since only an additional Hermitian matrix inversion is
required. .

We now wish to compute the mean and variance of P'.
In order to do this we assurne that M. N are large enough so
that as an approximation we may replace Ijp) by Jjz{}.)
in the definition for Ap, k) in (20).This then implies that
the weights Ap..k) are not random and can be replaced by
their expected values. This" is a simplifying assumption.
which is not actually valid, since these weights are designed
from the uata. However, it does appear to be a.reasonable
approximation. Using;:hisassumption we have

E{P'(/" ko)} = I~1tI-ocootx:oc P(x, k)IWN(x - I.)

. B'(}.. k, ko)j2 ~: dk",dky

(21)

where

(.17) K

B'(/..k, ko) = L Ap, ko) exp [i(k - ko)' Xj].
j= 1

(22)

It should be noted that the functional form. or shape, of B'
changes as a function of the wavenurnber ko. Thus,
E{P'(i.. kol} is obtained by means of a frequency-wave-
number window IWN(x-i,)'B'(i~ k, koW. Hence, P' will be
an asymptoticaUyunbiased estimate for cp if IWN(x- i.1
. B'(i., k. koW approaches a 3-dimensional delta function
in such a way that

L

K

J

-I

I
n

I
"',

f
'" d

P'(l,k)= ..~lqj,(l)exP[ik'(xj-Xl)] (18) -1t -00 -ocIWN(X-;,)'B'(/.,k.koW2:dkxilk).=c (23)

where {qj,(l)} is the inverse of the spectral matrix, {~,(l)}. where c is some positive nurnber.
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The varianee of P' is, assuming {NjmJ is a multidimen- matrix whose j lth element is exp [-iko' Xj]. Now we
sional Gaussian proeess, have the following matrix inversion formula

1 1 '

if
r. I'cx

f

"

VAR{P'(/..ko)} = M{E[P'(i..ko)]}2 + M, .J-x.:-x

. P(x, k)B'*(i., k ko)B'(i.. k. -ko) (24)
dx. !W",(x - i.)

1
2 ~ dkxdk,.2n .

Thus.

I

VAR{P'(i.,ko)} ~ M{E[P'(i~,ko)]}2, Jkol # 0

2

= M {E[P'(A, kO)]}2, Ikol= O.

The eonfidence limits for P' ean be obtained in a manner
similar to !hat tor Fdeseribed previously.

It will now be shown that the wavenumber resolution

..>ingP' is higher than that obtained by using P. We assume
that a single plane wave is propagating aeross the array of
sensors and that a noise component is present in eaeh sensor
whieh is ineoherent between any pair of sensors. Ir M, N are
large, then the speetral matrix is given by

li/(Ao) = bj/(R) exp [ - iko . (Xj - x/)], j,l = 1,"', K (26)

where

bj,(R) = 1,
= 1 - R,

j = I

j#l

R is the ratio of the ineoherent noise power to the total
power of the sensor output, ko = 2nfolZ. /0 is the frequency.
i.o= 2n/0T, T is the sampling period. - IZ is the slowness
vector which points in the direetion of propagation and has
magnitude lai= I/v, v isthe phasevelocityofthe propagating
wave. Henee, using (12)we have

~ . I I' R
P(J~o'k) = (1 - R) B(ilko) - + -K

where

ilko = k - ko.

Ifwe denote the matrix given in (26) by F, then

'/i!.
~c.

[(I - R)(q'q + ~l
)J

-] = ~

[

1- q'q

]

,(31)
. 'I - R R R

K+-
1 - R

so that using (18) we have

R 1 - R + (RiK)

P'(i.o. k) = K I - R + 2(R K) - Fli.o. k)
(32)

(25)
If k = ko, then

P(i,o, ko) = P'(i~o,ko) = 1 - R + R .K
(33)

In the vicinity of k = ko we consider that power contour, or
those values of k, for whieh P(i,o' k) = 1- R, which is still
very dose to the peak value of 1- R + (R/K), since R is
small, between zero and unity, and K is large, usually about
20. For these values of k we get P'(i.o. k)=~(1-R+R/K),
so that P' is already 3 dB downfrom its peak value of
1- R + R/K. Hence. the wavenumber resolution using P'
will be mueh higher than that obtained with P.

We now assume that there are two independent and
random plane waves propagating aeross the array of sen-
sors, plus incoherent noise. so that the speetral matrix is

F = q'jqj + q~q2 + RI (34)

(27) where q], q2 are 1 x K row matriees whose 1 jth elements

are. respectively. bl exp [ikj . xJ and b2 exp [ik2' Xj]' and
bi+b~+R=1. We now have

~.
k ~ b' l A " R

PVo. .) = L ; B(ilk )1- + -.
j=] K

(35)

(28)

where ilkj=k -kj'
In order to find an expression for P'(i.. k) we note the

following matrix inversion formula

[(R1 + q'lqj) + q~q2rj = (R1 + q'jql)-j

+ (R1 + q'jqj)-jq~q2(R1 + q'jqj )-1. (36)
1 + q2(R1 + q'lqd-1q~

Using this formula. as weil as that given in (31) we obtain

(29)

[P'(Ao,k)rj = [P'j(i'o,k)]-j - (~y

r

2\ 1
2 2Kbib~ J * }

4 2
1 1

2 K2

l
. b2 B(ilk2) - R + Kbi Re (B(ilkj)B(ilkdB (ilk2) + bjb2 B(ilkj)B(ilk21) (R + Kbif

K

( 2 Kbib~IB(ilk21W )I + R b2 - R + Kbi
,,"-

F = (1 - R)
[
q'q + ~l

J
'

1 - R

.. the K x K identity matrix, q is a 1x K row matrix

~~Iementis exp [iko . xj] and q' is a K x 1eolumn

(37)
)

where !:I.k./=k-kl and
(30) J.I

t
I..,
..

R
b; + K

R ,

P~{)'o'k) = K bJ + 2: - PP'o' k)

} = 1, 2, (38)

'" . . ,,,,"
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1

12 R
Pil.O,k) = bj B(!1k)j + K' j = 1,2. (39)

Thus Pj is the high-resolution frequency-wavenumber spec-
trum obtainOO when only the jth propagating wave. plus
incoherent noise. is present. In the vicinity of k = k1 we
would like P' ~ P~.Hence. the second term in (371represents
an undesirOOerror term in this region which we would like
to be as small as possible. It can easily be shown that this
error term will be small comparOOto l!P~ if

b~[R + Kbi(1 - IB(Ak12WI]

I 1
2 2 R 2 (40)

» R B(!1kd b2 - -dR + Kbd.K

most cases RIK will be very small so that we may write

bi » R.lB(Ak 12W 2'
K ,1- lB{Akdl

This inequality will be satisfiOO if either R/ K is small,

~(Ak12W is small or both of these quantities are smalI. It
.should be notOOthat IB(AkdI2 will be small if the wave-
number k1 oorresponding to one of the propagating waves

;'~sufficiently.different from the wavenumber kz ofthe other
propagating wave. In this case the two propagating waves

"'can be resolvOOin wavenumber by the natural beam pattern

,.,gf,the array of sensors, IB(k)jZ.However, if IB(Ak12W is not
..:"'toosmall, so that the natural beam pattern can not resolve

the two waves, it is still possible for the high-resolution
method to resoive the two waves if R/K is small and

IB(!1k12W< 1. Thus, we see the advantage of the high-
resolution method over the conventional method of fre-
quency-wavenumber spectrum analysis. In a similar manner
we may show that in the vicinity of k = k2' P' ~ P2 if

(41)

b2 » !!- IB(Ak21W .
2 K 1 - IB(!1k21W

Thus, we have shown that a certain type of linearity holds,
l.e.,

2

P'(}.o, k) ~ L Pj(i,o' k).
j= 1

In other words, the high-resolution spectrum of the sum
of two propagating waves, plus a small amount of inco-
herent noise; isthe sum ofthe high-resolution spectra for the

-individual waves, as indicated in (43). This result may be
extended to the case of M propagating waves, but the
precise conditions for the linearity to hold become cumber-
some to derive. It has been found experimentally that
linearity will hold if there is sufficient wavenumber separa-
tion between the propagating waves and ifthe beam pattern
lB(kW is reasonably good.

Tbc high-resolution estimate is basOOon the inverse ofthe
estimatOOspectral matrix, cf. (18).Therefore, the problem of
whether this inverse exists is extremely important. As men-
tioned previously, it has been shown that {~,(),)}is a non-
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negative-definite matrix when the block averaging method
of spectral estimation is used [3]. However, this is not good
enough to insure that the inverse of the spectral matrix
exists. That isoit must be shown that the spectral matrix is
positive-definite in order that its inverse exist.

In fact. if the number of blocks M is less than the number
of sensors K. then the spectral matrix is of order K. but only
of rank M at most and is thus singular. This can be seen by
writing the spectral matrix F as

M

F = L q~qn
n= 1

(44)

where qnis a 1 x K row matrix whose 1jth element is
N
" N im;'
L.. j.m+ In-1 )NG .

m=1

Thus, F is the sum of M matrices: each having rank unity,
and the rank of F cannot exceOOthe sum of theranks,
namely M. Hence, F has rank M at most and,if M <K,
F must be singular. Therefore, a necessary, but not sufficient,
condition for F to be nonsingular is M~K. As a practical
matter, it is found that whenever M ~ K, F will be non-
singular~ providing there is reasonable data in each block.

However, in some cases it is not possible to obtain K or
more data blocks. This situation arises, for example, when
analysis of transient signals is desirOOwhose time duration,
unlike that of the noise, is very short. In order to make the
spectral matrix non singular a small amount of incoherent
noise is added. This is accomplished by modifying the
matrix F given in (44) into the matrix F' given by

F' = (1 - R)F + RI. (45)

(42)

We now show that F' is positive definite. and thus non-
singular.

Consider the quadratic form Q associatOO with the
matrix F'

K K

Q = L L api h,(i.)
j= J 1= J

1-RM

\

K M

I

- im). 2

- r:- n~l j~J m~l afij.m+tn-1)N[ ,

(46)

(43) K

+ R L laj!2.
j=!

- 7r ::; i. ::; 7r.

Now, if Q=O, we must have
K

L lal = 0,
j= 1

(47)

since the first term in (46) is always nonnegative. However,
(47) implies that aj=O, j= 1,"', K, which proves that F'
is positive definite.

ApPLICATIONS TO SEISMIC DA TA

We now wish to describe the application of the conven-
tional and high-'resolution frequency-wavenumber spec-
trum estimates 10 seismic data obtained from LASA. Tbe
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LASA consists of 21 subarrays of 25 short-period (SP)
vertica1 seismometers as indicated in Fig. 1. At the center of
each subarray there is a three-component set of 10ng-period
(LP) seismometers oriented in the vertical (Z), north-south
(NS), and east-west (EW) directions.

As mentioned previously, a direct segment, or block aver-
aging, method of spectral estimation was employed. The
weights aj = 1, j = 1,. . ., N were used, cf. (J0) so that a
Bartlett frequency window was used in the spectral estima-
tion [4]. The seismic da ta considered was LPZ noise. LPZ
Rayleigh surface-wave events, and SP noise. The parameters
used in the measurement are given in Table 1.The results of
the conventional frequency-wavenumber spectrum mea-
surement program are displayed, at a fixed frequency, as

. ~ntours of - 10 log rP(A.,k)/Pmn] vs k"" ky, where Pmax is

the maximum value of P. The wavenumber coordinates are

in cycles per kilometer. The wavenumber grid on which P
is computed consists of 61 x 61 points. The level of the con-
tours varies from 0 to 12dB in steps of 1 dB. The display of
the high-resolution results is similar to that of the conven-
tional results with the only exception that the contour levels
are incremented by 2 dB. It should be noted that ifa wave is
propagating from the north with a velocity corresponding
to the wavenumber ko, then the wavenumber spectrum re-
sults will show a peak at the point k"= 0, ky= Iko1/211:,i.e.,
the peak will appear above the origin of the wavenumber
axes.

The transfer function of the LP system is shown in Fig. 2.
The results of both the conventional and high-resolution
frequency-wavenumber spectrum measurements for LPZ

A
.0;.~
~\,

I

'~
~
.~

J
$

.
1,
t

TABLE I

PARAMETERSUSED IN MEASUREMENTOF FREQUENCY-WAVENUMBERSPECfRUM

Sampling Array Nominal Number of Frequency
90% Added

Number of Confidence Amount
DA TA Rate Aperture Number of Sampies per Resolution Blocks =M Limits Incoherent

(Hz) (km) Sensors = K Block = N (Hz) (dB) Noise=R

LPZ noise I 200 21 100 0.01 36 :tl.2 0

LPZ Rayleigh surface-wave event
ntire wave) 1 200 21 100 0.01 36 0

- Z Rayleigh surface-wave event
(200 seconds at a time) I 200 21 100 0.0] 2 0.05

SP noise 10 36 25 100 Q.IO 36 :t 1.2 0
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Fig. 2. Long-period system transfer function.

~

noise are shown in Figs. 3 and 4 for two different noise sam-
pIes taken on 7 April 1967 and 26 January 1967, respee-
tively. These figures show that the conventional and high-
resolution results are in agreement as both methods tend to
show strong peaks occurring at the same wavenumber in
each program. However, the high-resolution method de-
I ates the frequency-wavenumberspectrum much more
c!early than the conventional method, especially in the
suppression of the sidelobe level. This is demonstratedquite
well in Fig. 4 which shows a 360° azimuthai spread for the
wavenumber structure with a variable power density along
this circle. This is, of course, exactly what would be expected
since the dispersion curve of the LPZ propagating seismic
noise has been measured and found to correspond to that of
a fundamental mode Rayleigh wave [5]. This implies that
at a given period the phase velocity of the propagating noise
at LASA must be constant, independent of the location of
the sources ofthe noise, and thus its frequency-wavenumber
spectrum must consist of an arc, or ares, whose extent cor-
responds to the range of the azimuths of the nrnse sources.

The results of Fig. 3 show the noise consists essentially
of a single wave propagating from the north.ln this case the
conventional result should appear essentially the same as the
beam pattern of LASA, with the peak of the beam pattern
occurring at the wavenumber corresponding to the vector
velocity of the propagating wave. That this is indeed the
case can be seen by comparing Fig. 3 with Fig. 5 which

shows the beam pattern of LASA. It should be noted that
frequency-wavenumber spectra were computed for a the-
oretical model of the LPZ noise and showed excellent agree-
ment with the measurements obtained using the aetual
LPZ seismic noise data. We also mention that the computer
running time to produce a pair of plots, such as is shown in
Fig. 3, is approximately 10 minutes using the IBM 360/67.

Another application of interest is to LPZ "Rayleigh
surface-wave events. In this case the propagating waves are
transients, in time, and the field of sensor outputs cannot be
considered as a homogeneous random field, as is the case
with propagating seismie noise waves. Therefore, the
frequency-wavenumber spectrum must be redefined in this
case. Towards this end consider the time eorrelation func-
tion

T A
pj/(m) = LIMIT _2 L Nj,nN/,n-m'

A-oo An=-A

The spectral densities hP.), f()., r) are defined in the same
manner as previously, cf. (2), (4), respectively, and the fre-
quency-wavenumber spectral density P(i., k) is also defined
as previously in (9).The measurement of P(i~ k) is still done
by the direct segment method as indicated in (12) and (18).
This represents an approximation which produces reason-
able results.

The frequency-wavenumber spectrum was measured for
the 21 November 1966 Kurile Islands event whose param-
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Fig. 3. Conventional andhigh-resolution frequency-wavenumber spectra for 7 April 1967
long-period noise sampie.
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Fig. 4. Conventional and high-resolution frequency-wavenumber spectra for 26 January
1967long-period noise sampie.
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Fig. 5. The beam pattern for the large aperture seismic array.



TABLE II

PARAMETERS FOR 21 NOVEMBER 1966 KURILE ISLANDS EVENT

Date:
Region:
Origin time:
Latitude:
Longitude:
Distance:
Azimuth:
Depth :
Body-Wave Magnitude:

2J November ]966
Kurile Islands
12: 19:27
46.7 N
152.5 E
64.3'
3J2'
40 km
6.0

03-- .JIN»t--
04~
o,~

02~'IfiI.',.rf/IIIIw'
E3~""'--

. E.~'''--JI{(#t'I'i~
EI~

FI~~

E2~

F2~~W~, , , , . , ,
12>15 12050 12'-"5 '300' 13<>5 13.\0 1:<15

21 NOV 66
KURILE ISLANDS EVENT

Hg. 6. The long-period waveforms for 21 November 1966
Kurile Islands event.

,

F

eters are given in Table II. The LPZ Rayleigh surface waves
of this event are shown in Fig. 6. The results obtained by
measuring the frequency-wavenumber spectrum over the
entire LPZ Rayleigh surface-wave train, as indicated in
Table 1, are given in Fig.-7 for frequencies ofO.03, 0.04,
0.05 Hz. lt is known that the beating, or modulation, of the

.!Velopeof these surface waves, as shown in Fig. 6, is caused
by multiple path propagation, especially at shorter periods,
cf: [6]-[8]. This multipath propagation effect is shown
quite cl~arly at 0.04 Hz where two peaks are resolvable. One
peak is at an azimuth corresponding to the initial wave
arriving along the great circle path between LASA and the
Kurile lslands, while the other peak shows the later multi-
path arrival propagating from the northwest.

In order to determine the time delay between the multi-
path arrivals at LASA, for the 25-second period group, the
frequency-wavenumber spectrum was measured over suc-
cessive 2OO-second-Iong blocks of time, as indicated in
Table 1.The results are given in Fig. 8, which, for simplicity,
shows only the high-resolution results. Fig. 8(a) shows that
the initial 25-second period group arrives from approxi-
mately the azimuth of the event, while Figs. 8(b)--{d)show
the later arrivals coming from a more northerly direction.
The time delay between the multipath arrivals appears to
be about 200 seconds, since the emergau:e of a secondary
peak to the north is visible in Fig. 8(b). The group vol(t~:,.
for these waves at the 25-second period is about 3.3 km/s so
thatapath length difference of about 660 km or 6 degrees
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(a) Frequency=0.03 Hz. (b) Frequency=0.04 Hz. (c) Frequency
=0.05 Hz.

exists between the two multipath arrivals. Similar results
have been obtained by Evernden by measuring phase ve-
locities with a tripartite array [7], [8]. In addition, Evernden
gives a theory to explain the causes of the multipath propa-
gation of Rayleigh surface waves.

We now discuss the application of our results to SP noise.
The transfer function of the SP system is shown in Fig. 9.

1
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The results of both the conventional and high-resolution
frequency-wavenumber spectrum measurements for SP

oise are shown in Fig. 10 for a noise sampIe taken on
'ebruary 1967.The array ofSP seismometers used in this
surement is shown in Fig. 1I and the beam pattern for
array is shown in Fig. 12. The results of Fig. 10 show
..at 0.2 Hz the SP noise consists of two components, a

elocity body wave whose horizontal phase velocity

0
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Fig. 10. ConventionaI and high-resolution frequency-wavenumber spec-

tra for 1 February 1967 shon-perioö noise sampie: 08:03:00 10
08:09:00. (a) Frequency=O.2 Hz. (b) Frequency=0.6 Hz. (cl Fre-

quency = 1.0 Hz.

is about 13.5km/s and a low velocity surfacewave whose
phase velocity is about 3.5 km/so At frequencies of 0.6 Hz
and 1.0 Hz the SP noise consists primarily of body waves.

CONCLUSIONS

The estimation of the frequency-wavenumber power
spectral density is of considerable importance in the analy-
sis of propagating waves by an array of sensors. The con-
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ventional method of estimation employs a fixed wavenum-
ber window, and, as a consequence. the wavenumber resolu-
tion is determined essentially by the natural beam pattern
ofthe array of sensors. The high-resolution method of esti-
mation employs a wavenumber window whose shape, and
thus sidelobestructure, changes and is a function of the
wavenumber at which an estimate is obtained. In addition,

PROCEEDlNGS OF THE IEEE. AUGUST 1969

this change in wavenumber window shape is performed in
an optimum manner, as pointed out previously. Ai;a conse-
quence, it has been shown that the wavenumber resolution
of this method is determined primarily by the amount of
incoherent noise which is present in the array of sensors,
and, to a lesser extent. by the natural beam pattern of the
array.

The experimental results show a considerable improve-
ment of wavenumber resolution of the high-resolution
method relative to the conventional method. In the case of
LPZ seismic noise there was an improvement of about a
factor of four, cf. Fig. 3. Thus, the high-resolution method
is extremely useful for the estimation of the frequency-
wavenumber spectrum when the incoherent noise power is
relatively small compared to the power of the propagating
waves.

The high-resolution method would, of course, be useful
inapplications other than seismic arrays. We now mention
briefly the application of the method to radio astronomy.
1t is now possible to synchronize the outputs recorded at
several radio astronomy telescopes [9]. Thus, these tele-
scopes can be considered as sensors in an array, (cf. [9,
Fig. I]). If the incoherent noise power in each telescope is
sufficiently small, i.e., the radio signals from distant stars
recorded by the telescopes should be coherent and there
should be relatively little incoherent background noise
power, then the high-resolution method is directly appli-
cable forthe purpose of using this array of telescopes to
map tlre sources of radio energy.
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