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GEOPHYSICS

Array estimators and the use of microseisms for reconnaissance

of sedimentary basins

M. W. Asten* and J. D. Henstridge}

ABSTRACT

A “natural ficld™ seismic technigue is possible 1o
attain by observing microscisms with a suitably de-
signed array and by digitally processing the data to
obtain estimates of the phase velocities of Rayleigh
waves. Wavelengths of interest in detecting depth to the
basement of sedimentary basins arc in the range 2 to 20
km, and correspond 1o wave periods from 1 1o 7 5. An
array of five or seven seismometers deployed as an ex-
panding cross configuration simplifies field procedures
and s adequate for phase velocity measurements of
Rayleigh waves in the required wavelength range, pro-
vided high-resolution frequency-wavenumber spectral
analysis is used. This analysis can be implemented on a
minicomputer i the field.

Results obtained from observation in a sedimentary
busin - of known structure  show  predominantly
fundamental-mode  Rayleigh wave propagation. The
scatter of velocity estimates 15 small enough to allow
inversion by curve matching, and depth to the hasement

can be computed 10 an accuracy of + 30 percent with-
vut requiring restrictive assumptions of a seismic veloci-
Ly structure

INTRODUCTION

The high cost of regional on-shore seismic surveys using
conventional reflection or refraction methods poses the
question of whether passive or natural field seismic methods
may be cost-effective for regional reconnaissance surveys. In
this paper, we discuss the effectiveness of one such technique,
and note that the costin terms of instrumentation and logistics

appears favorable for acquisition of low-resolution seismic
data. Naturally occurring seismic waves. termed microseisms or
seismic noise. can be detected over a peried range of at least
0.01 1o 100 s. However, since the wave motion is in general
restricted neither to a single mode nor 10 a single direction of
propagation, extraction of uselul information requires use of an
array of peophones combined with digital data processing tech-
nigques,

The method described in the paper utilizes the fact that
microseisms in the period range 2 to 20 § propagate principally
as Rayleigh waves, and exhibit phase velocity dispersion which
is 4 Tunction of the velocity structure of the upper few kilome-
ters of the Earth's crust. An elementary discussion of Rayleigh
waves in sedimentary rock overlying crystalline basement was
given by Tatham (1975). Morc rigorous discussions were given
by Dorman and Prentiss (1960), McFEvilly and Stauder (1965).
and Mooney and Bolt (1966}

Toksor (1964) reported an earlier attempt Lo use microseisms
in the exploration of sedimentary basins. The advances in array
daty processing theory and available computers since that ex-
periment make a further study of the method worthwhile. In
this study, two major tasks are recognized: (1) the design of a
seismic array which is logistically viable in a reconnaissance
exploration program; and (2] the implementation of optimum
data processing procedures on 2 minicomputer in the field.

SOURCES AND PROPAGATION MODE
OF MICROSEISMS

Generating sources and propagation modes of microscisms
were reviewed by Asten (1976) and are summarized in Figure 1.
Wave action al coast hnes appears o be the most important
source of microseisms al periods within the 2 to 18 5 band,
Although such microseisms have been studied by seismologists
for decades, it was only with the advent of seismic arrays such
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FiG. 1. Mode structures and sources for microseisms. R, L, P
denote Rayleigh, Love, and compressional waves, Subscripts 0,
1,2 denote fundamental and higher modes.

as the Montana Large Aperture Seismic Array (LASA) that
microseism sources and propagation modes were resolved in
any detail (Haubrich and McCamy, 1969; Toksoz and Lacoss,
1968). For periods 6 to 20's, propagation occurs as fundamental
and higher mode surface waves. At periods 2 to 6 5, both surface
and P-wave propagation modes have been recorded at the
LASA, with a proportion of P-wave microseism energy being
dependent upon the presence of ocean storms near the conti-
nent. Phase velocity measurements by Toksoz (1964) in three
sedimentary basins of North America yielded values consistent
with fundamental Rayleigh mode propagation in the period
range 1L.3to 6s.

From the above information, we may conclude that the
Rayleigh modes necessary for this technique of sedimentary
basin reconnaissance cxist, but the distribution of energy be-
tween Rayleigh modes, and the propertion of accompanying
P-wave “noise” is dependent upon both locality and meteoro-
logic factors.

An interesting consequence of the source and propagation
maode of surface waves is that they are only minimally affected
by thin, irregular top layers (c.g., basalt cover) which present
significant problems to conventional seismic techniques.

DESIGN OF AN ARRAY

For the ideal casc of a single noise-free plane wave propagat-
ing in a single direction, the vector phase velocity is readily
computed from the relative phases of the signal recorded at
three geophones in a triangular array. In fact, such an array
could be used even il noise were present, but only if the noise
structure were accurately known (for example, the noise at each
geophone not correlated with the noise at the other geophones),
and i the signal could be observed for an indefinitely long time
1o allow the effects of noise to average out. However, in prac-
tice, noise will be present, and it will only be possible to observe
for a limited time, since the microseismic signals have finite
duration and there may be more than one plane wave present.
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FiG. 2. The expanding seismic array: five §cophoncs are used to
form arrays of diameter 0.75, 1.5, and 3 km. Only two geo-
phones are moved for each expansion.

The limitations of such an array can only be overcome by using
more geophones to introduce “redundancy of information™
and beamforming data processing methods to make best use of
the information collected. In this paper we consider use of
“conventional ™ and *high-resolution™ wavenumber spectra as
developed by Lacoss et al. (1969), Capon (1969), and reviewed
by Davies {1973), Capon {1973), and Filson (1975).
Four constraints apply in designing the array configuration

(1) The array diameter (D) should be at least as large as
the longest wavelength of interest to give adequate
resolution of long wavelengths. This condition en-
sures that the array function will have a null point.
For a Rayleigh wave of period 6 s and velocity of 3
km/s, this implies that D = 18 km.

When viewed from any direction, there must be some
stations whose spacings are less than half the shortest
wavelength of interest so as to avoid aliasing n the
wavenumber domain. For Rayleigh waves of a 1 s
period this may require a spacing less than 0.75 km.
The number of stations must be greater than the
number of plane waves which may be present at any
one time. This is particularly a problem with micro-
seismic work,

The deploying of the array must remain logistically
viable in the context of a reconnaissance exploration
program. Il a single array is used, the conflicting
constraints of (1) and (2) require the use of a large
number of seismometers with cable or telemetry links
to a central recording site. Instead an asymetrical
cross configuration has been designed (Asten 1976,
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Fii. 3. Conventional array response of a five-geophone 3 km
diameter array.

1977a) which can be expanded progressively by
moving only two stations at a time while keeping the
same basic geometry as shown in Figure 2. The ex-
pansion is repeated with microseism data recorded at
each stage until the range of array diameters used
covers the range of wavelengths of interest.

TECHNIQUES OF WAVENUMBER ANALYSIS

Conventional frequency-wavenumber spectral analysis is the
simplest technique for extraction of propagation velocities of
the different frequency components in a recorded microseism,
both from the conceptual and the computational viewpoints, In
fact, in the nondispersive situation, it is identical to delay-and-
sum beamforming. With this method, one may either consider
the full frequency range at once using a model for the dispersion
as a function of frequency (see e.g., Gonez and Hannan, 1975)
or consider the frequency bands one at a time. We follow the
latter approach since it requires fewer assumptions about the
datga.

The estimate of the scaled power spectral density at angular
frequency w and vector wavenumber k for an array of p geo-
phones is

Plw, k) = ): Zq,[fw]exp[—:znk ),

where

élw) = an estimate of the complex coherency between
signals at the jth and /th geophones at
frequency w,

r, =1; — r, where r; and r, are the positions
of the jth and ¢th geophones,

| 2nk | = w/|¥],

and

v = phase velocity of wave motion
at frequency .

Note that wavenumber is defined to have a direction anti-
parallel to the direction of propagation with units of
cycles/kilometer.

This expression can be conveniently written in matrix form
as

Plo, k) = E(k)*Clw)E(k)
where
E(k) = (e~2%r1  p-idskeyT

and Clw) is the matrix of coherencies. Superscripts * and T refer
lo conjugate transpose and normal transpose, respectively. We
shall call E(k) the phase vector.

A single monochromatic plane wave of frequency © and
wavenumber k, differs only in phase at each station. Therefore
it has a coherency-distance relation of the form

clw, ) = Hw — wq) exp (iky - 1),

and [as shown by Capon (1969, 1970)] has a [requency-
wavenumber spectrum of the form

Piw, k) = 8{w — w,, k = k),

which is a delta function in three-dimensional space. When
finite lengths of data are acquired with a finite array, the
estimated power spectrum for such a monochromatic wave is

Pla, ki = | W, (w — wg) |*| W,k — k) I?

where W,(w} is the Fourier transform of the time window used
for the data recorded [rom each geophone, and

P P
1w =Y ¥ exp(—ilnk-ry).
J=1 =1

| W,(k)]* is termed the spatial window function (Lacoss et al.,
1969) or the beamforming array response (Capon, 1969). For
the more general case of true spectrum distributed in wavenum-
ber magnitude and azimuth, it may be shown that the estimated
wavenumber spectrum is the 2-D convolution of the true spec-
trum with the spatial window function (Lacoss et al. 1969, p.
25).

The array response of the five-station cross array with arm-
lengths | km and 2 km, is shown in Figure 3. The response
power is shown in decibels down with respect to maximum,
contoured on wavenumber space.

Il only one plane-wave signal, with wavenumber k,, propa-
gates in the presence of incoherent noise, then the only purpose
of using Plw, k) is to obtain an estimate of k,. Any other
features of the estimate of the wavenumber spectrum will be
artifacts of the spatial window function of the array. We can use
the fact that W, (k) will always have a global maximum when
k = 0, and hence Flw, k) will have a maximum when k = k.
This was discussed by Hannan (1975) who gave a general
statistical treatment of the errors of estimation, including error
variances as a function of the true spectra and the array design.
In fact it can easily be shown that his methods provide an
estimate which 15 very close to the true optimal maximum
likelihood estimator of kg .

Microselsms in R

I of Basi 1831

If the noise is not incoherent, this simple method of esti-
mating k is not unbiased, and in fact unless the noise has
particular structure or the signal-to-noise ratio is very high,
estimates of k can be very poor. Even an isotropic noise field
(Eckart, 1953) can bias results. If, however, the structure of the
noise field is known (in terms of the correlations between
geophones), Henstridge (1977) showed it is possible to allow for
it and obtain useful estimates equivalent to those of Hannan
(1975).

Resolution

Unfortunately, in seismic problems the coherent noise is
usually another signal or signals with unknown spectral struc-

ture; hence it is more useful to consider methods which aim at

ing the wa bers k,, k;, ...k, of all the signals
present (s represents the number of signals). Hence the resolu-
tion of the array becomes important. The Rayleigh criterion
used in optics would consider two signals with wavenumbers k,
and k, resolved if the difference | Ak | is greater than the radius
of the first null or zero point of the array responsc function.
This is often considered too conservative, and Woods and Lintz
(1973) proposed a criterion whereby |Ak| must exceed the
radius of the 3 dB contour of the array response function, These
radii are dependent upon the array diameter and, to a lesser
extent, on array geometry. The criterion for resolution may
thus be written as

|Ak| = r/D
and resolving power RP defined by
RP = r~!

where D is the array diameter and r is a constant determined by
array geometry. For practical circular and cross arrays (using
conventional beamforming methods), RP takes values in the
range 5 to 7 by Rayleigh's criterion or 1.8 to 2.5 by Woods and
Lintz's (1973) criterion.

With arrays of the type discussed in this paper the diameter is
comparable with or less than the wavelengths of interest, and so
the conventional wa suffers from very poor
resolution. Capon (1969) introduced a new high-resolution
(HR) estimate of power spectral density given by

Flo, k) = [Ek*Clo) 'Ek)] ! (2a)

or

P L
Plw, k) = { Y ¥ gutw)exp [ i2nk - r,,]} . [2b)
J=1 =]

where the §;, (w) are the elements of Clw)™". This estimate of
P'lw, k) was based on principles of maximum likelihood filter-
ing, and other justifications have followed (Capon, 1973; Liaw,
1977). These results state that Flw, k) can be a good estimate of
the true wavenumber spectrum P{m, k), not necessarily that
P'(w, k) can be used to estimate the wavenumber of a signal,

Figure 4 shows a simple graphical explanation of the HR
estimator. The explanation is illustrative, not exact, since the
HR estimator is capable of resolving two wavenumbers which
remain entirely unresolved by the conventional estimator.

In comparing properties of the two estimators, we dis-
tinguish between their accuracy and their resolution. In Appen-
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FiG. 4. Illustrative comparison of the conventional and HR
wavenumber estimators on data ¢ g two wa bers
k, and k,. (a) Conventional estimator P yi:lds orly resolved
maxima. (b) Summation using the inverse o the coherency
matrix yield near-zero minima instead of maxima at kg, k. (c}
Inverse of (b) is P, showing sharp maxima at kg, k,.

dix A it is shown that when only one signal is present the
maxima of P(w, k) and P(w, k) coincide; hence they are equally
accurate in estimating the wavenumber of that signal. This is
consistent with the proof by Pisarenko (1972) that both the
conventional estimate and Capon’s estimate belong to a gener-
al class of estimates which share many properties.

In a study of microseisms one cannot rely upon there being
only one signal. There will often be several signals and these
may have some common origins, For example, two signals may
originate from the same source but have different modes of
propagation and hence different velocities. Woods and Lintz
(1973) considered the case of two correlated signals kg and k;,
plus noise which was uncorrelated between stations but of
arbitrarily low level, They showed, theoretically, that Flo, k)
will be zero except when k =k, or k,, and hence resolving
power is arbitrarily high [or arbitrarily low noise levels. In
Appendix B this is extended to the case of an arbitrary number
of signals in uncorrelated noise, a situation more realistic in
studies of microseisms.

Unfortunately, it is difficult to predict quantitatively the
improvement in resolution obtainable by using the HR esti-
mator on real data. Empirical results by Woods and Lintz
(1973) and Asten (1976) show the HR estimator to have a
resolving power three to six times greater than the conventional
estimator. However the widths of peaks are very dependent
upon signal-to-noise ratio as well as signal properties and array
design, so the improvement cannot be regarded as a general
characteristic of the estimator.

Both the conventional and HR estimators in general produce
biased estimates when multiple wavenumbers are present. One
source of bias to high velocities is attributable to the finite-size
grid in wavenumber space (Bungum and Capon, 1974). This
bias is predictable, quantifiable, and reducible by the use of
smaller grid spacing. A second source of bias is due to the
smearing effect of the array response function. Modeling with
the conventional estimator {Asten, 1977a) shows bias to be
most apparent when two plane waves k, and k, with different
azimuths are incompletely resolved in wavenumber space; the
wavenumber yielded by the estimator is then approximately a
veclor mean of the true wavenumbers, and in most cases has a
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en 150°€ r\ pE Table L. Seismic model for Sydney basin near Richmond.
J \ Thickness P 5 v P
\ (m) (km/s) (km/s) {tim*)
\C azes aete ey BBy o i Eoe i it
1.5 03 0.15 033 1.8
\ 183 0.71 0.39 028 20
®.5 17 0.39 047 22
' Newcastle (Alluvium base)
N 500 148 1.88 0.30 24
l 1000 388 323 025 2
1 BOO 4.63 2.68 0.25 26
S, Richmond *
© {Metamorphosed basement)
\ 4 000 6.04 149 0.25 28
2 4
‘ SYONEY i 5 000 6.5 375 0.25 29
| {Moho)
{ e 8.0 46 025 33
Wollongong U
~
r &
» wavenumber plots which are unstable with respect to changes
]k o i data length or frequency window used, and therefore vield
v | | unreliable wavenumber estimates (Asten, 1976).
\ Q A nonsingular coherency matrix is assured if a small amount
1 3608 of incoherent noise is added to the matrix elements &, prior to
o bl 100 Km: inversion (Capon, 1969). This is most simply accomplished by
= ———| P 4 P .
multiplying the diagonal elements ¢;; by a factor D slightly
greater than unity. A series of tests described by Asten (1976}

F1G. 5. Location of test site at Richmond, in the Permo-Triassic
sedimentary Sydney basin, Eastern Australia. The dashed line
shows northern and western limits of the basin (from Mayne et
al, 1974),

smaller magnitude (corresponding to a higher propagation ve-
locity) than either k, or k,. A general condition for avoiding
biasing is that the array response function when centered on k,
should possess a minimum at k, (d'Assumpcac, 1977). Al-
though it may be possible to do this by shaping the array
response function with suitably weighted coherencies, the data-
adaptive approach needed appears unsuited to the handling of
large amounts of seismic data.

The HR estimator reduces biasing by resolving multiple
wavenumbers. However, an additional condition for successful
application of the method is that the coherency matrix elements
¢ in equation (2) be nonsingular and hence possess a stable
imverse, Capon (1969) showed that a necessary but not sufficient
condition for nonsingularity is that

Mz=p, 3)

where M = number of discrete frequencies averaged lor each
coherency estimate. The condition becomes insufficient if un-
smoothed spectral values within the frequency window are
partially correlated; this will occur if the signals analyzed con-
tain transients (Capon, 1969) or il the time window applied
before transformation is not square (Henstridge, 1977). The
practical effect of using a near-singular matrix is to give HR

showed that with D = 1.00, M = 10,and N = 7, HR wavenum-
ber plots were stable if a square time window was used, but
occasionally were unstable if @ Hanning time window was used.
With D =102, M =10, and N =7, HR wavenumber plots
were stable irrespective of the time window used, and showed
no significant loss in resolution. Further increase in the value of
D did not further improve stability, but it did reduce resolution.
Thus the value D = 1.02 is preferred for HR plots involved in
this study.

INSTRUMENTATION AND FIELD PROCEDURES

Seven Willmore Mk 11 geophones and TAM-5 seismic ampli-
fiers were made available for the project by the Australian
Burcau of Mineral Resources. The geophones were not identi-
cal, but were calibrated for absolute amplitude and phase re-
sponse using techniques described by Asten (1977b). Relative
phase response of the amplificrs was within 3 degrees over the
frequency range of interest.

A test site in the Sydney basin, located near Richmond, 50
km west of Sydney (Australia) was chosen (Figure 5). Table 1
shows a layered seismic model for the site, based on
compressional-wave data from a local seismic refraction survey
and from o1l company seismic reflection surveys, plus assumed
Poisson ratios and densities for consolidated rock. Poisson
ratios for the alluvium were obtained from a separate experi-
ment {Asten. 1978b).

The array configuration of Figure 2 was adhered to as far as
possible, within constraints imposed by access and available
instrumentation. The smallest cross array used contained seven
vertical-component geophones and had an aperture of 750 m.
Seismic amplifiers were located within 5 m of each geophone,
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and the amplified signal was connected to a minicomputer by
twin wires laid from a vehicle. The computer was a Interdata 70
equipped with A/D and D/A converters and a nine-track tape
drive, all mounted in a caravan.

Manpower for the survey consisted of one geophysicist plus
one assistant with a light vehicle.

Two expansions of the array, to 1.5 km and 3 km diameter,
were execuled, with the number of stations reduced from seven
1o five for logistical reasons. In order to reduce the connecting
wire needed for these larger diameters, signals from two sta-
tions were transmitted to the computer via simple radio-
telemetry links constructed from standard audiofrequency
modems and pairs of high-Trequency band transceivers (Asten,
1976).

Microseism data were acquired in segments of length 40 or
%0 s with a sample interval of 10 or 20 ms, and were stored as
files of multiplexed samples on the digital tape,

DATA PROCESSING

Each segment {or file) of digital data was processed with the
following steps.

(1) Demultiplex. Compute raw spectrum for each station
with a Hanning (cosine-bell) time window and a standard last
Fourier transform routine; correct spectrum for the combined
transfer function of geophone, amplifer and filters; store true
ground-acceleration spectra on digital tape. The Hanning time
window, rather than a square window, was required to mini-
mize [requency-window leakage effects [rom spectral peaks.
Such leakage, il not eliminated, results in erroneous phase
velocity estimates (Smart, 1971).

(2) Estimate complex coherencies between stations using
smoothing over 10 discrete frequencies with square frequency
windows; store the array coherency matrix for cach frequency
window on tape. The theory used in this step follows Koop-
mans’ (1974} approach.

(3) For cach coherency matrix, compute HR wavenumber
transform on a 41 = 41 point grid in wavenumber space; dis-
play power density on the grid as a “density plot™ on the
computer's printer. (These density plots prove sufficiently accu-
rate for estimating wavenumbers, and thus the need for ad-
ditional software and hardware to produce contour maps in the
field is avoided.)

(4) Pick maxima from wavenumber plots; convert to veloci-
ties; plot velocities versus [requency on bilogarithmic graph

paper.

RESULTS

For cach of the three cross arrays used, analog chart records
of cach file of data were visually scanned to reject data contain-
ing anomalous noise, strong high-lrequency signals (e.g., from
vehicular traffic), or below-average signal strength at periods 2
to 6 s. Four or six files of data for cach array were processed to
obtain phase velocity estimates from HR wavenumber plots.
Figure 6 shows an example of three HR plots produced from
three adjacent frequency windows on a single data file.

Phase velocities obtained are shown in Figures 7, 8, and 9.

1
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FiG. 6. HR wavenumber plots for three consecutive frequency
bands of data file T4 F11, acquired with the 3 km array.
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For purposes of comparison, theoretical phase velocity disper-
sion curves for fundamental, first and second higher Rayleigh
wave modes are shown on these figurcs. The theoretical veloci-
ties were computed for the model shown in Table | using
methods described by Dorman and Prentiss (1960).

Phase velocities in the period range 1.5 to 6 5 are of most
interest since they are more sensitive to the thickness of sedi-
mentary rock over basement. Velocities obtained with the 3 km
array (Figure 8) show clear dispersion consistent with funda-
mental mode Rayleigh wave propagation. The scatter of veloci-
ty estimates is controlled by array resolution. Since the wave-
lengths being considered range up to 18 km (at 6 s period)
compared with an array diameter of 3 km, it is reasonable to
suppose that a reduction in scatter of velocity estimates could
be achieved by further expanding the array to 6 km and 12 km
diameters,

In the period range 0.5 to 1 5, veloeity estimates show con-
siderable scatter on Figures 7 and 8 and do not show any trend
relatable to Rayleigh wave velocities. We may note, however,
that power density spectra ol ground motion show a strong
minimum in this band (e.g., see Figures 9 and 10 of Asten,
1978a), and that previous microseism surveys summarized in
Figure 1 have also failed to define a dominant source or mode
for microseisms in this band.

At periods shorter than 0.5 s phase velocity estimates ob-
tained with the 0.75 km array (Figure 7) are indicative of
fundamental and higher mode Rayleigh wave propagation.
These waves are sensitive to seismic properties of the top few
hundred meters of and thus their possible uses lie
not in sedimentary basin reconnaissance but in depth-of-
alluvium or depth-of-weathering studies. These aspects have
been published elsewhere (Asten, 1978b).

Resolution of basin depth

The question of greatest interest is to what accuracy do
observed phase velocities define sedimentary basin depth,
Phase velocity data plotted on bilogarithmic graph paper can
be compared with master curves of Rayleigh wave dispersion,
by using curve-matching procedures similar to those used as
standard procedures in electrical geophysical methods.

An established procedure for reduction of the number of
master curves necessary is to use the upper-layer shear velocity
(B}, thickness (h,), and density (p,) as units of velocity, dis-
tance, and density. Computed dispersion curves of phase veloci-
ty C versus period T then take the form of plots of C/B, versus
By T/h (see, For example, Dorman, 1959; Mooney and Bolt,
1966). If an observed dispersion curve €' versus T" is plotted on
bilogarithmic graph paper and overlain on a matching master
curve C/B, versus B, T/h (where p, is specified), then

B =C/C by =(T)T) x (C/C), and p,

are the units of velocity, distance, and density for a correspond-
ing model of this real earth at the field observation sites. In
practical terms, the model curve, if plotted on bilogarithmic
scales, need not have the dimensionless form.

Thus in an observed dispersion curve C’ versus T’ matches a
theoretical curve C versus T for an n-layered seismic model,
with axis shifts given by

=,

0.75 «m ARRAY
TEF 1

- T6F 3

+ 16F 5

« T6F 9
T&F10

- TEF12

10y

L it
25 0

L1 l]JHJJ
5 10

PERIEY fgen!

Fii. 7. Velocity estimates in (km/s) made with six files of data

from the 0.75 km array using the HR estimator. The superim-

EMEd curves are theoretical velocities for fundamental and
igher Rayleigh modes.

and
T =xT,

where x, y are constants, then seismic parameters (primed
symbols) for an n-layer approximation to the real earth are

B = ¥Bm (shear velocity),
), = ya,, {compressional velocity),

h, = xyh, {layer thickness),

10—
E 1.5 km ARAAY :
SiE= =T2F3 L
- sT254
i 1 ST2FS
% ~Tasz
e L
>
3 1-0 f—
05—
aallll Lol Lo ol
01 0& 10 s 10
PERICI isec)

FiG. § Velocity estimates made with four files of data from- the
1.5 km array.
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PERIOD (sec)

FiG. 9. Velocity estimates made with six files of data from the
km array.

and
PulPt = PulPy {density ratio),

where m has values 1 to n for an r-layer model.

Mote that ratios a,,/B,, for each layer must be specified for a
given master curve, and remain invariant under the scaling
procedure,

In Figure 10) phase velocity observations made with the 3 km
diameter array are compared with a theoretical dispersion
curve computed for a two-layer model. Parameters of the
model are shown in Table 2 and represent a idealized sedi-
mentary basin of depth 3 km, overlying crystalline basement,
The fit shown corresponds to x = (L.72 and y = 1.06in equation
(4), thus yielding an estimated basin depth of 2.3 km. Alter-
native graphical fits of the model curve to the data are equally
valid and yield depth estimates in the range 2.2 and 3.7 km,
compared with a depth of 3.3 km given in Table | which was
obtained from geologic mapping and limited seismic reflection
data reviewed in Mayne et al. (1974).

In this example the sedimentary basin has been modeled
using horizontal layers. Ten kilometers west of the test site the
basement rises at a dip of approximately 6 degrees toward a
major fault an additional 10 km to the west. For Rayleigh wave
periods up to 6 5 the fault is a full wavelength or more from the
test site. Therefore it is not expecled that the lateral geologic
variation would induce phase velocity perturbations at the test

Table 2. Seismic model for a “standard ™ sedimentary basin.

Thickness P 5 v p
(m) (km/s) (km/s) {t/m")

3 000 35 20 .26 24
— 6.0 35 25 28
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FiG. 10. Data from Figure 9 with superimposed master curves
(dashed lines) of Rayleigh wave velocitics on a two-layer model
representing a sedimentary basin of thickness 3 km.

site, although it is conceivable that reflected energy may in
some circumstances result in additional apparent sources ap-
pearing on wavenumber plots.

In a general application of microseism observations to sedi-
mentary basin reconnaissance, assumptions of horizontal layer-
ing may not be justified. Interpretation of measured velocilies
may then require 2-D analog modeling (e.g., Kuo and Thomp-
son, 1963) or finite-clement modeling (Drake, 1972).

CONCLUSION

Phase velocities of microseisms in the range (0.3 to 7 s have
been successfully measured using high-resolution frequency-
wavenumber analysis of data from an expanding array of five

" geophones. Velocity dispersion for periods in the range 2 to 7s

is consi with fund tal-mode Rayleigh wave propaga-
tion, although velocity estimates show some biasing toward
higher velocities in accordance with theoretical limitations of
the HR estimator. Comparison of velocity data with theoretical
Rayleigh wave dispersion curves for two-layer models allows
basin depth to be estimated to within 30 percent of geologic
depth. 1t is reasonable to predict that with suitable telemetry
equipment, expansion of the seismic array to diameters greater
than 3 km would reduce this uncertainty.

Manpower requirements for a survey are low (observer plus
1 or 2 assistants) so the potential exists for gaining low-
resolution reconnaissance seismic data at costs below conven-
tional seismic surveys, particularly where irregular surface
layers impede the use of conventional seismic techniques.
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APPENDIX A

We may consider the case of only one signal by writing Clw)
as

Clw) = Nw) + slw)E(k)E(ky)*,
where

MN(w) is the component of the coherence matrix
due o noise,

slw) is the spectrum of the signal,
and

k, is the wavenumber of the signal.

In what follows we shall drop the reference to w where it can be
done without confusion.

With this model we have
CF o N N UE( (k)N LT+ SE(koP*N ' E(kg)],

(this can be shown by multiplying by €) and then the HR
estimate is

Fiw, k) = {Eky*N""E(k) — 5| E(k)*N " "E(k)|*
I+ sE(kg) "N Elkg)]}

The denominator in the last term can be expanded as a power
series to give

Plw. k) = CERPN'EK) ' Y (51 + sElky)*N " Eko)]
=0

* | E)*N ™ Efkg) /KN E(k) . (A-1)

Mi I inR

I of Basi 1837

The term |E(k)*N " "E(ko)|*/E(k/*N"'E(k) is similar to the
adaptive filtering expressions of Widdrow et al. (1967) and
Henstridge (1977). In particular it achieves its maximum when
E(k) = E(ky) which implies k = k, when spatial aliasing is not
present. Hence the function given by the above summation
would provide a good method of estimating k,, but unfortu-
nately it is then multiplied by [E(k)*N " "E(k)] "' which will, in
general, bias the position of the maximum of F{w, k). The
biasing will only be absent if [E(k)*N " 'E(k)] ' is constant in a
region about k,, . The only simple situation in which this occurs
is when the noise at different stations is not correlated. Then
N(w) = nfw) where Lis the identity matrix. Then

Plo, k) = nﬁpz [

£=0

|E{RJ'£{II )Fp? J . (A-2)
and

1
Plo, I(J=nfp[] | E(k)*E(k) */p? ] . (A-3)

I+ ps/n

This is clearly maximized when k = kg, the maximum value
being n/p + 5.

The result should be compared with that obtained with the
conventional beamforming estimate Plo, k).

if

Clw) = nl + sE(kg)E(ky)*.
then (A-4)
Btw, k) = np + 5| E(k*Eik) |,

This will also achieve its maximum when k = k; and the maxi-
mum will be np + sp®. That is, in the case of one signal, P’ and
P will give the same estimates of wavenumber and signal
strength. The two spectra are monotonic functions of |
E(ky)*E(k}| and as such will contain precisely the same infor-
mation. The often mentioned high resolution of Capon's
method does not apply in this case. #(w, k) will have sharper
peaks than Plw, k), particularly when the signal-to-noise ratio is
high, because of the effects of the high powers in the summation
in equation (A-2); but this does not imply greater accuracy.

APPENDIX B

We may consider the case of several signals by modeling the
spectral covariance matrix as

Clw) = eNlw) + Ulw)$o)Ulo)*,
where

Niw) is the spectral density matrix
of the noise as belore,

Uiw) is a matrix whose columns are the
phase vectors of the signals,

Sw) is the spectral density matrix
of the signals,

and
e >0 is a small number.

We do not assume that either N{w) or ${w) is a diagonal matrix.
That.is, the noise at different stations may be correlated, and
different signals may be correlated. The only assumption is that
the signals are not correlated with the noise. Using a result of
Rao (1973, p. 33),

Cloo)™" = g7 H{N"! = NN Y)Y

+eNTTUUAN L) e(UNTD) T+ 8]
x(USNTUUN

We wish to consider the behavior of E(k)*C ™ "w)E(k)*, as &
tends to zero, and we can do this by noting that E(k) can be
represented as E(k) = Ua + b where a and b are vectors de-
pending upon k and U*N"'b = 0 (see, for example, Ficken,
1967, p. 299).

Then

EK)*C ™ Hw)E(k) = ¢~ '[b*Nb + ca*[e(U*N"'U)"" + §] 'a}.

If k is the wavenumber of a signal, then E(k} = Ua where a will
be a vector with a | in the appropriate position and zeros
elsewhere. Then since b =

Plo. k) = {a*[o(U*N ') + 8] "a}”

and as ¢ tends to zero, this goes to (a*$ 'a}” ' which will be
nonzero since § is positive definite. However, if k does not
correspond to a signal, then b will not be zero, and the term
&(b*Nb) ! will dominate as & tends to zero so that P'{w, k) will
tend to zero. Thus in the limit, P'(w, k) will be zero except when
k corresponds to the wavenumber of a signal present.




