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Introduction

Since the days of Wiechert and Galitzin, seismograms have -chiefly
been investigated from the view point that they consist of successive
distinguishable phases, and the travel time curves for various phases
have been essential clues in revealing the structure and state of the
matter within the earth. " This idea of ‘‘ phase’’ is indeed very natural
and appropriate so far as the duration of shocks at their origin is
negligibly short as compared with the characteristic time of the struc-
ture, such as a crustal layer, through which the seismic waves are
propagated. Here the characteristic time of a layer may be represent-
ed by the ratio of its thickness to the velocity of seismic wave pro-
pagation in the layer.

There are, however, many cases in which the above assumption of
short duration of shocks does not hold. An example of such cases is
the propagation of seismic waves through a complicated crust. What
can be clearly identified on the records of seismic waves due ‘o near
earthquakes such as those frequently observed in Japan is the initial
motion of P waves and at best that of S waves. The main remaining
part of such a seismogram has not been paid due attentions, if not
neglected, any information from this source regarding the nature of the
medium of propagation having been scarcely expected.

_ Other examples are the waves.due to causes other than earthquakes,
such as microseismic waves closely connected with meteorological dis-
turbances, volcanic tremors, microtremors generated by traffic, and
other tremors of artificial origin. It is hardly possible to deal with
those waves from the standpoint of phases and to deduce from them
any useful travel time curves. - '

The object of the present paper is to develop a method for dealing
with those complicated waves in order that the nature of the waves as
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well as the nature of the medium of propagation may be revealed.
: - thi hod “is bzlsed%r ‘fi?’ a statistical investigation of waves in
Jime ‘and. 1l;§‘space&3:e need to assume that our waves are stationary
Jn b bo th :¢This assumption represents quite an opposite extremity as
compared with that underlying the phase method, and is certainly an
appropriate one for studving those complicated waves mentioned above.

It is true that many studies on such waves have been made by
various authors from the statistical point of view. But so far as the
writer is aware, those studies have been made for rather limited pur-
poses. ‘' For example, the study of spectral distribution of seismic waves
has aimed at either getting useful information for earthquake damage
prevention or investigating the dependence of the spectrum on the epi-
central distance, the earthquake magnitude and the nature of wave
paths and so on. Similar studies have also been made about voleanie
tremors as well as microtremors due to traffic origin, and the spectrum
of microseismic waves has been studied in reference to that of sea
waves which are believed to cause them. Also the object of the use
of filters in explosion seismology has been to secure a clearer identifi-
cation of phases on a seismogram.

Those studies have been primarily concerned with the spectrum of
waves in time, while the spectrum in space has not yet attracted due
attentions. The recent study by K. Akamatsu" (1956) of the autocor-
relation of microtremor waves in space is among the few made on the
latter subject. She has made clear the spatial character of vibration
of the ground. The process for obtaining the spatial autocorrelation
coefficient, however, consists of troublesome steps such as simultanous
recordings of vibrations at several points, readings of the recorded am-
plitudes, and computations of the autocorrelation coefficient -among the
waves to be studied. In order to secure rapidness and efficiency of
measurments in the study of this kind, K. Aki¥ (1956) built a simple
automatic computer by which the computation of spatial autocorrelation
coefficients can be made without following individual steps stated above.

So far as the writer knows, the study to be reported here is the
first, specifically designed to elucidate the relation between the speetrum
of waves in space and that in time with reference to the nature of
medmm of propagatlon y means of the method presented in this

1 K. .-\I\AMATU, Zisin, [ii], 9 11956;, 22,
2y K. AKIL, thild. 9 (1956), A0,
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FTor those waves
mﬁedmmj In ad-

In Chapter 1 will be given, some results of theorehcal%nmderatlons
of stochastic waves which are stationary both in time and space, and
it will be shown what should be measured in order to find the disper-
sion curves, the mode of polarization, ete. of the waves. The instru-
ments designed specifically for this purpose will be deseribed in Chapter
2. They consists of filters of phase shift type and an automatic com-
puter of the correlation coefficient.

Chapter 3 will be devoted to describing the results of apphcat:on
of the present method to the study of microtremors due to traffic
observed at Hongo, Tokyo. The results obtained are as follows; 1)
those waves are propagating in every direction with almost uniform

power; 2) the horizontal component of V},b.,éim.l&stmngly polarized

in_the direction tfghendicular_to the direction of propagation showing
that they are of Love type: 3) the dispersion curves have gendeduced;”

and the velocities of S waves at various depths ecalculated.

p—_

Chapter 1. Theory of stationary stochastic waves

The most fundamental material in the study of wave from the
standpoint of phases is certainly the travel time curve which indicates
the relation between the tfdal time and epicentral distance. It may
he expected that the corresponding fundamental material in the spectral
studies of waves will be a certain relation between the spectrum of the
waves in space and that in time. At first we shall look for this rela-
tion in the most simplified case of one dimensional waves, and at the

same time shall attempt to show the characteristics of stochastic waves
which are stationary in time and space.

1. One dimensional stationary waves having one single velocity

With the assumption that our waves travel with a single and de-
finite velocity ¢ independent of the frequency of vibration, our waves
u(x, t) can be expressed for the region z=0 ~ X formally
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PR u(z, t)=>3, A, exp (ip,x) cos cp,t
: - 5_‘,5;:— exp (ip.z) sin cpat L)
¢ where 5
gl : Pa=222 (n=0, +1, +2,---)
i X :
ll This is the solution of the one dimensional wave equation under the These a

E initial conditions that A,’s ang

1 : and that

4 M w(z, 0)=YX A, exp (ip,x)

1 Tt (2)
‘\p@u& #(x, 0)=X B, exp (ip.2) .

' o\*(‘u for all »
: Since u(z, 0) and #(x, 0) are both real, A, and B, must be the con- IG™(e)F 1
jugate complex numbers of A., and B., respectively. ment and
Now let us find the condition under which the waves formally Defini
given by Eq. (1) are stationary both in time and in space. At first, for a give.
we notice the initial state of our waves as given by Eq. (2). Here
w(x, 0) and #(r, 0) should be treated as stochastic variables with a
parameter z. and using |
The Fourier coefficient A, of a general stochastic process which is
stationary with respect to a single parameter z for the region z=0~ #3, )=
X is known to be written in terms of the corresponding Fourier
coefficient E, of the so called ‘‘ thermal or white noise’’ as follows; 1
An=E‘n-O'G(“(Pa) B ( 3 ) F
rom E(‘

where G“(p,) is not a stochastic variable. From the purely random
character of * white noise ”’, it follows that

or

(4)

where o, is t}

: dent of time,
where the bars represent the operation of average. for st ationaiy

Using these formulas, we have ing the law of
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rmc Lm'm n‘r Lm'ioﬂﬂ ! Smﬂsfi(‘ a
gl e,
S s S ry .
: A '_0 ’ n+m'—‘ 0 ’ 1

.--—.-

=G )I

an_d in a similar way, - '
[—— ‘ . ( 5
B,B,=0, n+m==0 )
BaF=1G* (il

L

These are the statisti
{ tistical relati o ia :
A’s and B’s. M lons existing amon :
» .’S. Moreover, i g the Fo :
igrroeiaiton ol o e i  Sstasment
ent of each other ement
: , we have

AB.=0, - -
(6)
(2)”and (5), L we see. that i@ryfﬁ )T‘" anc?

; 'l’)(:-n II't)-:u('r' t)“(z"_sr t)
and using Eqs. (5) and (6), we obtain : -

g, )= 5 JPI K t
q"{': f) Sl -2—;;"{16 (P,,)" cos® cput + lgw‘_“_)f Bin®
. percs cp,.t} exp (7p.£)

1 I,

= G.{( 5 )I: - tGg( ) )2

e {IG*(pa)F cos* ep,t + ! N | o ;
o= sin? ep,t} exp (ip,2)dp (8)

'
From Eq. (8), we see that{if}

IGp =Ll
o
or |
- (9)

(&, t) becomes indepen*

(9)*@“11;?‘
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Intfb{i‘ﬁéi;lﬁ this condition into Eq. (8) and dropping the suffix 4 we

get

(10)

J 6&, )= ()= [lcru»n exp (ip3)dp

\wﬁ

We shall now proceed to investigate the relation betiveen the
spectrum in space and that in time.  For this we define the spectrum

density in time as

=1 Ul + {Ui(wy)}*
Uwn) 7 S dwf2z (5

where U(w,) is the Fourier cosine coefficient of u(r, ¢) with respect to
t and for a given x, while U,(w,) is the correapondmg sine coefficient,

It can readily be seen from Eq. (1) that

U= Au o0 (1225) + A, s = i222)

r B Aty B % )y (12)
Ulwy)= ;-:exp (a_c-.c) +_¢-u: t..xp( a-;.-.z:)
and Ry 211’0
aw, = Cngm iy
dw,=cdp,= —:Y:‘-

Inserting Eq. (12) into Eq. (11), we get
(wa)=

[A exp (a%".r)+ 4.4__. exp (-— i‘.'i!.\')]:+ I::f' exp (E".é:’x) + i:" exp (-—— ifi;..;‘a:')]:

7 ¥ i 44w, 27

By the use of Eq. (5) this may be writtet{ as

..“1 4_,,+ 28 B-,, m,,
Plongh e 4dw, 2=

Finally, inserting Eq. (9) into this, we obtain the following equation,

Part 3.

where the
Spectrum d
sional wave
As will
equation w}
sSpectrum de
the present

or

Whi(.‘h can re

2. Dispersive

We shall
that Eq. (15)
cation except
the constant
constant for a
constant in t;
write

The equation e

Introducing of



th

.

A Sl

" o A S 1 3 i o

.\

»
M

i,x

- -
e,

[Vol. XXXV,

Jaffix A we

- (10)

: :uon between the
‘ ‘ﬁne the spectmm

(11)

., t) with respect to
&, flicient.
Ting sine coeffici

?)

(12)

B-- exp (— ' “)]

w l||____________..._._..—--

e following equation,

Part 3.] Spacc ani Timc Spcetra of Stationary Stochastic Wares, 421

=GN Ip 2= _ |Gw/e)F

o e 9
where the suffix » is dropped. This is the relation which connects the
spectrum density in space and that in time in the case of one dimen-
snonal waves.

As will be sho“n later, as compared with Eq. (14), the followi ving
equation which {Sias Vidods) ey lat.lon Tinction iZ) with the
spectrum: densitym:d e
the present study :
A O e

¢(;)—-2—ﬂ§__ @(w) exp (z‘c c)dw

or

#)=1 [ o(w) cos (422 )do

which can readily be obtained by Eqs. (10) and (14).

2. Dispersive waves

We shall now proceed to the case of dispersive waves, and show
that Eq. (15) obtained above holds also in this case without any madifi-
cation except the substitution of the function e(w) of frequency w feor
the constant velocity ¢. For this, we notice that if we take Af’ o
constant for all », the interval du, between consecutive w, is no longer
constant in the dispersive case and varies with ». Then we may
write

dﬂ)
. . 6
e (d,,),.""" " s

The equation corresponding to Eq. (14) is now written as

IG(NIC)I o
MNew : (1"
o dw’d{l

Introducing of this into Eq. (10) yields the final formula,
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#=g | 16w exp( 2% ¢)32 du g
po . B waves ha
| H‘}:Sn @(w).cos (-C-(%-)-E)dw 1“,81»% : s G
i & _ i " another, v
g : ' S SN e measuring
j 3. Spatial autocorrelations of filtered waves (1) component
i : ; ; : 3 ment of th
: In this section the most essential part of our method will be il- as ey(w).
lustrated in the case of one dimensiona_l waves. Corresponding to the ponents' it‘
separation of a seismogram into successive particular phases in a study i
of ‘‘ phases’’, the vibration of a seismograph is resolved into simple
ha.rmomc osclllatlona in other words, Four:er analyms is applied to-
1 ethg;(i. For this purpose. we use electronic re-
we snall refer in Chapter 2. If the filtration by a
resonator having frequency w, is sufficiently . sharp. to allow us to as-
sume the spectrum density of the filtered vibration to be
Pw)=P(w)d(w—w,), @ >0 (19)
w here 6(«:) is the Dn'ac d-function, then the corresponding Spatial auto- £
[ Tunc “(18%.i1s written as
' The last
(2, w)=P(w,) cos( -2 (20) finite, we can
C(Wu) ﬂ-'th componen

for a given «,
: Finally, th
(&, o f"q) composed of co.

Defining t@j._t"

orrelation. coefﬁcler;t as'i

f’('u "-’xl) = S c
#(0, "-’u) In this case, in
we may write it as
p(5, w)=cos —(-—) (21) and replacing th
L(

R 3t the dis “curve ie. the curve of .
|- peloc funetion: of - fre ,--k “can be obtained directly
; ement of Pl _ ﬁﬁrement*‘of this” quantlty' From this and us
and for a fixed distance £ is therefore
[amental m_our mefﬂ-o& But this is allowed ‘only in the - c
case in whlch the waves concerned ha\e a single velocity corresponding

ow b &
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to a frequency w?

component wave by attaching the suffix =: for instance, the displace-
ment of the »’th component as u,(x, t) and the corresponding velocity

as c,(w). Then from the assumption of independence among the com-
ponents, it follows that

A
u(z: t)-zuu(x t)n
#HO= S 6= 3 . [0.(0) exp (i 2= 1), ¢
#e, w)= 3 Pulwn) cos (=2 ),
— s\l -
Ple, )= T eos () (22)

The last equatlon shows \tht t e number 1\ of components lS

Fmally, there may cases in which the wave can be assumed as
composed of component waves having continuously distributed velocity.
In this case, introducing the velocity distribution function defined as

Pw, ¢)=P,(w)/dc,

and replacing the summation by the integration in Eq. (22), we have

P&, w) -'ﬁ(};)s:p(w' ¢) cos (;f:—j-s)dc (23)

From this and using the Fourier transformation, we obtain

c—;;(c::)c) 25 U, ) cos(c("’) )d,-: : (24)

o e AR oty 1. TN < W ot ST AR A e e T
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4. Two dimensional waves of a single velocity

Now let us investigate the case of two dimensional waves, in
which the reasonning is quite analogous to that given above for the
case of one dimensional waves, though there appear additional terms

such as the direction of propagation and polarization of vibrations. At -

first we shall deal with those waves which are neither dispersive nor
polarized.

Assuming that our waves travel with a single velocity ¢, we write
them in the form

u(r, y, )= A,. exp (ip,xcos O, +ip,usint ) cos (cp,t)

+3 5 Bm exp (ip.xeos 8, +ip,ysin 0,) sin (ep t) . (25)
-

cpi

This is the solution of a two dimensional wave equation under the initial
conditions that

u(z, y, 0)=%% A,..exp (ip,xcosl, +ip.ysind,) } o
o

w(z, y, 0)=N% B,,. exp (ip,xcosl,,+ip,ysind,)

Since n(x, y, 0) and d(x, y, 0) are both real, A,. and B, . are the con-
jugate complex number of 4, ..» and B, ... respectively, in which
(=) is a suffix defined by the relation, f.,==.

Analogous to Eq. (5), the mean value of the absolute square of
A, . and that of B, . are written as

A uaF =1 G, O 0 I ]

(2=)
f : (27)

5 : e do o
IByml=1G"(p, O, P2 = =t
¢ (@=)

The spectrum density |G(p, f)fF in the above equation represents the
amount of power carried in the waves at the initial state per unit area
of the phase space which is formed by two dimensional wave numbers
A=pcost and p=psin /.

...... e
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Again corresponding to Eq. (5), we have

A Apn=0, naen’, mam'+(z)

B Bon=0, nxn', ma~m'+(7) o
and corresponding to Eq. (6),
A B =0 (29)

for all ». m. n° and w’.
Using the e i
T LM:L, a:*;)\feo :Ol;?euh;s wcl_i.:an write the spatial autocorrelation
m M3 7 wo dimensional waves i i
spectrum density in space as Gl vy

ME 7 ) = ulx, y, Du(r+2, y+7, 1)

S Pudpr, I, :
5 (é:)f - {IG‘(.".. 0,.)}* cos® (cpt)

LG, 0,)

sin® (rp,,t)} exp (ip,£ cos A, +ip,7,sin A,)

From abav i i
i th_c‘ 1I_me equation, it follows that the condition for a stationary
stochastic wave of two dimensions is written as : E:

G, 0= 1G2: 6)2
c’.’,,:
. : (a0)

LXI D E IS F I
ﬂl._-_.“m,._I"'; :B". o

o i Iatins 12 1
Introducing this into (3, 7, #), we obtain

iz, 7, 1) = g2, 7)= 5 Padla 00 1 ; -
)= SR G Py 6.0 exp (it cos O +ipyy sin f.)

Replacing the summatio: i i

o ion by the integration and dropping the suffix A

G oyl 2
M2, 1) a;)_:SSEG(p, 0) exp (ipz cos A+ip7 sin O)pdpdl  (31)

and accordingly we also have bj". the Fourier transformation

Iy (p = = 1
IG(p, O)F= SSQ‘}(:. 7) exp (—1ipt cos 0 —iuy sin 0)dédy, (32)
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On the other hand, the spectrum density in time of the wave is
written as

e 1 (Tm )) +(U (m,,))' .
e Jm,f?:' 5

where U/fw,) is the Fourler cosine coefficient of u(z, », ¢) with respect
to ¢ for given z and y, while U,(w,) is the correspcnding sine coef-
ficient. We see in Eq. (25) that

Ufwy)= 3 V Aum e\p( "2 cos O, +1 2 Jsm 0 )

Ufewm,)= E:_’_‘, exp( ':": cos .+ P J sin # )

™m  (Uy

(34)

wa=Cp, .
Usin
48

Eqs. (2:) (28), ('ml and (32), we can write 1he sneclrum density

w)- 1 terms of the § laga'__tncorrglgglon function d'(:. v;) as follows,

lAnlll -+ #Bmllu "’rr

‘1-

O(wn) == g A
=4-1_'J;' (.:- n)i"f:wu
=£-E_Sit:_,dﬂ“¢($. 7) exp(—z.%’.'-‘- cos —i :-E r sin ﬂ);f sy .
(33)
Replacing (¢, ;)‘by a circular coordinate (r, ¢") defined as
and using the relation
j :‘dﬁ exp { —ipr cos (1—¢)} =2=J (pr)
we have from Eq. (35)
o)=L [[rr. v220m) "%"dv (36)
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If we introduce Ih& :;%ﬁﬂ%’@

'E“i"'fﬁ'ét‘ﬁid':i?{‘iﬁ :
S o P

#ry= - (o(r, D)y &)

we see that a one to one correspondence exists between this function
¢(r) and the spectrum density @(w) as follows

R

#)=1{ o (2r)de EDE]

This last equation (39) is derived by the use of the Hankel transfor-

mation. It is clear that Eq. (39) corresponds to Eq. (15) for one
dimensional waves.

5. Dispersive waves of two dimensions

It will be shown in this section that Eq. (39) also holds in the case
of dispersive waves without modifications except the substitution of
the function e(w) of frequency « for the constant velocity ec.

Taking the relation into aceount,

dw,= (%;:'_)' dp,
we obtain

o= ol o) o

.corresponding to Eq. (35) of non-dispersive waves. From this and Egs.

(32) and (37), we have

Ou)= 7 .gﬂs a(r) ———)r)rdr

Then the Hankel transformation yields the final result:
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6. Spatial autocorrelation of filtered waves (2)

As has been mentioned in Section 3 the measurements in our
method are camed out in two steps; firsE;” the"se smograph  vibrations
‘ eredy 2 ECort ong ﬁltereZlg vxbratlon ' the spatial auto-

fhcient e&ff So far“as ‘we are’ concerned with
waves having a single v;locxty corresponding to a frequency w, the

azimuthally averaged autocorrelation function J(») of the wave filtered
by a resonator of frequency w, is written from Eq. (40) as

$(r) =¢(r, w)= P(wu)J.,( e ) (41)

where P(w,) is the same as defined by Eq. (19). In consequence, de-
noting the corresponding autocorrelation coefficient j{r, «,), we have

o, t.,u)-=.fu( ‘_(‘:-“ ; r) : (42)

:t one measures ;{r‘ w,) for a certain
(‘(m.), i.e. the dls-
g for. the correspondmg range of frequency

el T

"Now let us proceed to the cases in which waves are polarized, and
later refer to the cases in which they are composed of partial waves
having different velocities and the above procedure cannot be applied.

7. Polarization

As far as two dimensional waves propagating over a horizontal
plane are concerned, it is evident that there is no polarization with
respect to the vertical component of vibrations. On the other hand,
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Por, )= ( 21_):‘” s

$.(r, s")=={ ;:_]H c
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)
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pagation, or in the direction perpendicular to that. For instance, in
the case of seismic waves, P waves, SV waves, and Rayleigh waves
belong to the former, while SH waves and Love waves belong to the
latter., 2

In order to deal with those polarized waves,

- . Acecy

ine vibrations of which thd correlation is to be. investigated.;

spatial autocorrelation funections for these two components as
b, &) = u(z, yJu(z+7rcos¢h, y+rsiny)

 ulr, ) =uy(z, Yuy(z+7cosd, y+rsin )

we have from Eq. (31) for waves of the parallel polarization

r, #)= ot ([ o8 0—01G(r, O exp (i cos (0—) ot l
(43)

s 9= 1| s 0= G, F exp tipr cos (0— )}t J

and in the same way we have for waves of the perpendicular
polarization

¢.(r, )= (21_):“ sin® (0 —¢)|G(p, O) exp {ipr cos (8 — ")\ pdpd I
1 : . (44)
Pulr, )= (2.-.-)=SS cos® (A—¢)IG(p, O)F exp {ipr cos (A—')} pdpd0 J

The above equations show that in both cases the sum of two com-
ponent autocorrelation functions

¢r(r| 9")+¢¢(f, 5")

is wﬁtten in the same form as Eq. (81) for non-polarized waves

sir, D+ e, )= 1 ({16, 00F exp tipr cos 09— ) edpdt . (B5):

(2=)
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On the other hand, the mode of polarization is shown apparently Likewise w
-4 in the azimuthally averaged autocorrelation functions;
-' b &)= [or, )y
&= o (r, .
* o e
From Eq. (43) and the following relations From ti
2e : ¢.(*, w,) and
S. cos* (" —0) exp {ipr cos (¢ — 8)} dy=n {J (pr)— J(pr)} wave.
r sin® (y»—0) exp {ipr cos (s"— )} dy»=n {J,(p7) +JLpr)}
’ 8. Special ca
we obtain for the parallel polarization, In this se
- (a) IG(p, O) is
an= - ),ﬂm. O ) —J e D l PRedd Ll
1 (46) Chapter 3 to b.
qbw(,-)_z 5 SS|(;(,,, O T pr) + T pr)} pdpd I quakes may bel
( their origin. W
In the similar way, we have for the perpendicular polarization, the latter a *“p
In the case
: =2 o L J§16. o ien)+ 2 pdpds ]
5 (47)
700=1 {6t ortam—denpan | SHASHER
If the correlation is taken among the vibrations filtered by a re-
sonator of frequency w, we may write
—-Slf‘(p OF pat=P ()= 22 (48) Thus ¢(r, ¢) is in
can replace ¢(r) b;
(-16) _\\_e have the correspondmg' izxmuthal- Previously, and W‘_;

to ¢». This also ho
On the other h

Then msertmg thls mto E 3

Blr, w)= P(wu){J t_(w“)) J( = )}
(49)

(7, wn)‘- P (“"'){ (t'(wn) )+J=(c'('u::_,,)r)} and we have

...........
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n is shown apparently
tlons.

2 1) = Jdprk

: o) + L)}

(or)} pdpdd 1
(46)
Apr)}pdpdd l

:ular polarization,

(pr)} pdpd0 1
(47)

Apr)} pdpdd }

srations filtered by a re-

i Y (48) .
c(wy)

» corresponding azimuthal-

sarallel polarization,

(o
C(“’a)

o)

(49)
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Likewise we have for the mmw]@m@yoﬁg

FAr, )= Hw.,){Jv( t‘(w)) g = e, )} 1

o (r, w)= P(wu){ (‘.(u,n) ) J(c(w )} J

From the above formulas it is clear that .
ﬁ?ﬁ@@mﬁn‘fﬁ#thg polarization of- the
R st A it T A A TR 2 5 v e S

(50)

8. Special cases

In this section we shall consider the following two special cases;
(a) {(;(p, M is independent of ¢, (b) |G(p, 0)F is zero except for #=4,
and #=0,+=. For instance, the case of microtremors will be shown in
Chapter 3 to be of the former type, while seismic waves due to earth-
quakes may belong to the latter if observed at a point distant from
their origin. We shall eall the former wave an * isotropic wave '* and
the laller Rt plane wave”

isotropic. wave] urmng

1G(p, O =G (51)
we get from Eq. (31)
otr, )= | IGER I ypdp (52)
2= Ja

Thus ¢(r, ¢*) is independent of ¢, and it is clear that in this case we

can replace (r) by ¢(r, ¢) for an arbitrary ¢ in the formulas obtained
previously, and we need not take the average of ¢(r, ¢*) with respect
o Thh also holds for po]ar:zed isotropic waves.

On the other hand, & of the plané” waveswe may write

IG(p, O)F=IG"(¢)F5(6—-6,) (53)

and we have
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$(r, ¢)= S!G (1) cos {or cos (¢ —B.)} pdp . (54)

If we-observe the wave filtered by a resonator of frequeney w,, it fol-
lows from Eqs. (48) and (53) that

: 9o )16, Ot = G =Plsi(p= ). (55)
( (1]
Then the corresponding autocorrelation function 4(r. ¢, w,) is written as

e, ¢, w)= P(m)cos{ d’ )rcos(s'-—ﬂ..)} (56)

and also the corresponding autocorrelation coefficient as

b e (e, L om,) il o L o o
or, ¢ @) - S cos {('(m,,)? ?OS_ (-t u)} (37)

or
cos (y'—#,)_ 1

e(w,) re {(=1)" Cos~' p(r, ¢, w,) + nx} . (58)

ided the value of =z is known beforehand.
polarlzed plane wave, t\e have, for instance,
for the parallel po}anzatlon

¢Ar, ¢, w)= cos’ (,— ") P(w,) cos {d,.,,. )" cos (y'— ﬁu)} ]

"y 59
q‘),,(? wu)—- sin® (6,—¢") P(e,) cos @ ) 608 (c,"-ﬁu)} J

('(ﬂ-’s:)

el D t orclmary ; -;fhorl by mvest:ga.tmg ‘the amplitudes for

arjtﬁ}é’ 'aggzi&hmtha‘l anglesas’

Our method will, however, be effectively applied to 2 wave com-
posed of two independent waves, which differ from each other in the

Thls last formula (18) shows that ﬂ'&aﬁ‘ determine the velocity c(w,)
o 8 'c 1on “of progagatmn 'by measunng or, q. w..)
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maode of polarization and in the velocity of propagation. The general
nature of the plane stochastic waves will be given elsewhere in the
future in connection with seismic waves.

9. Velocity distribution

In this section we shall deal with two dimensional waves of multi-
ple velocities.  SupposingARAE DUr” waves® are.not. polar:zed and denot-
ing a quantity related to the #’'th component' wave by a{tachmg the
suflix », we write our wave in the form,

u=3uz, v, t).

Assuming the statistical independence among the component waves
as in the case of one dimensional waves we get the following relations,

Wr, =S g(r, )
Hr)=3 8.(7)’

. "’u)=S$J|(r’ w)= 3, P (o }J.,( fuln) )

=SB )

This last_equation @g) indicates that 7t the” number’ N of component 3
s AL e -:=.‘".a"x et e 50
‘ ' thex_veloclty and _the percentage of pone;

Pty

Tt may happen, as in the case of one dimensional waves, that the
velocily of component waves is distributed continuously. For such a
wave group, we define the velocity distribution function by the relation,

j){‘”nh C,)JC,,E n(‘"ﬁ) ’

and I.hen we can Wl‘ite
DLy, W)= Wy, ol e & - 61
(!f, “J) ip('-,o (')J " ?)dc { )

From this it follows by the use of the Hankel transformation that

uring 7i(r, w,)_ for a glven @y and for (2N——1)” ¢
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P‘;(ﬁ; d;‘) - S' o, w,,)Ju-( o r)m‘.r . (62)

Thus we have the formula by which to determine the velocity distribu-
tion function from the value of 7i(r, w,) for =0~ o in the case of

~ two dimensional waves. Eq. (62) corresponds to Eq. (24) for one dimen-

sional waves.
In the case of the polarized wave of multiple velocities, we see
from the results obtained in Section 7, that if we replace, for instance,

Mr, w,) by the sum of the component aulocorrelation functions,

‘(F,( r, m,,) + &;;(}‘, m,,)

every formula in this section holds unaltered.

10. Discussions and summary =

The results obtained in the preceding sections indicate that the
study of waves from the viewpoinl of speetrum will give us additional
informations which have heen neglecled hecause of the lack of proper
method of analysis for the purpose. We have dealt with one dimensional
stochastic waves in detail, and extended the reasoning followed there
to two dimensional waves. It will be easy to proceed to the investiga-
tion of three dimensional waves, but this does not seem to be practical-
ly necessary for our measurements of waves are usually confined on a
plane surface.

We shall enumerate here the principal results obtained in the pre-
sent chapter.

(1) The spatial autocorrelation coefficient /(2, w,) of a one dimen-
sional wave having a single velocity ¢ and being filtered by a resonator
of frequency w, is given by the relation,

(3. my)=cos (c ). 1)

Thn holds also for a dispersive wave \\lth the substitution of e¢(w,) for
the constant velocity ¢

(2) If we are allowed to assume a conlinuous dlstnbutlon of velo-
city in a stochastic one dimensional wave, we can obtain the velocity
distribution funection 7:{w,, ¢) in the form,

R & et
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