
" lH~-

. ......

~" .

., .7 ",,-3 iB' "
22. Space and Time Spectra of Stationary Sto:hasric Waves,

with Special Reference to Microuemors.

",~JttI:1'IV:e/"

By Keiiti AKI,

Earthquake Research Institute.
(Rrad May 28, J957.-R~ceived June 30, J957.)

)uld be addressed to

University of Tokyo,

Introduction

Since the days of. Wiechert and Galitzin, seismograms have chiefly
been investigated flOm the view point that they consist of successive
distinguisbable phases, and the travel time curves for various phases
have been essential clues in revealing the structure and state of the
matter within the earth: '"TJiis'idea of .. phase" is indeed very natural
and appropriate so far as the duration of shocks at their origin is
negligibly short as compared with the characteristic time of the struc-
ture, such as a crustal layer, through which the seismic waves are
propagated. Here the characteristic time of a layer may be represent-
ed by the ratio of its thickness to the velocity of seismic wave pro-
pagation in the layer. .

There are, however, many cases in which the above assumption of
short duration of shocks does not hold. An example of such cases is
the propagation of .seismicwaves through a complicated crust. What
can be clearly identified on the records of seismie waves due to near
earthquakes such as those frequently observed in Japan is the initial
motion of P waves and at best that of S waves. The main remaining
part of such a seismogram has not been paid due attentions, if not
neglected, any information from this source regarding the nature of the
medium of propagation having been scarcely expected. .

. Other examplesare tbe waves.due10causesother than earthquakes,
such as .microseismiLwaves closely connected with meteorological dis-
turbanees, ~Elcanic tremors, microtremors generated by traffic, and'
other tremors of artificial origin. It i5 hardly possible to deal with
those waves from tbe standpoint of phases and 10 deduce from them
any useful travel time curves. .

The object of the present paper is to develop a methOd for dealing
with those complicated waves in order that the nature of the waves as
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.,uf, the medium of propagation may be revealed.

~~i.-~~'J!!' C'äi~~:~ statistica1 investigation of \Va~e8 in
~Plt:~l e~~!:!~~_t?c.~u~e t~t oUf ,wave.sare stat~onary
J,!1...$th;i:':', 18 assumptlon represents qUlte an opposlte extremlty as
compared with that unc1erlying the phase method, and is certainly an
appropriate one for studying those complicated waves mentioned above.

It is true that many studies on such waves have been made by
various authors from the statistical point of view, But so far as the
\\'riter is aware, those stucHeshave been made for rather limited pur-
poses. .For examllle, the study of spectral distribution of seismic waves
has aimed at either g-etting-useful information for earthquake damage
prevention or investig'ating- the dependence of the spectrum on the epi-
central distance, the earlhquake magnitude, .~nd .the nature of wave
paths and so on. Similar studies have also been made about volcanic
tremors as weIl as mierotremors due to traffie origin, ami the speetrum
of microseismie waves has been studied in reference to that of sea
waves which are believed to cause them. Also the object of the use
of filters in explosion seismology has been to secure a clearer identifi.
cation of phases on a seismogram.

Those studies have been primarily- eoncerned with the spectrum of
waves in time, while the spectrum in space 'has not yet attracted due
attentions. Tbe recent study by K. Akamatsul) (1956)of the autocor-
relation of microtremor waves in space is among the few made on the
latter subjeet. She has made clear the spatial character of vibration
of the ground. The process for obtaining the spatial autocorrelation
coefficient,however, consists of troublesome steps such as simultanous
reeordings of vibrations at several points, readings of the recorded am-
plitudes, and computations of the autocorrelation coefficient.among the
waves to be studied. In order to secure rapidness and effieieney of
measurments in the study of this kind, K. Aki:) (1956) buHt a simple
automatie computer by which the computation of spatial autocorrelation
coefficients can be made without foIlowing individual steps stated above.

So far as the writer knows, the study to be reported here is the
first, speeifically desi~ned to elucidate the relation between 'the spectrum
of waves in spaee and that in time with reference to the nature of
medium of propagation. mf:means' of the method presented in this
paperri1n~""'äir~tibtf'distr~o~(o{ 'l)l'opagation as weIl as the mode of
~,<_o>", ,.;_.",~.,.M',-'"~",~~",, ','",'

1) K. AKA)lATU,Xis;'l, (iil. 9 \ 1956'":t2.
2! K. ,\KI, -j!,i.t.9 (}950'. ,11).
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. 'In Chapter 1 will be given. someresults of theoreti~;l~nsiderations
of Rtochastic waves whieh are stationary both in time and spaee. and
it will be shown what should be measured in order to find the disper-
sion eurves. the mode of polarization.' ete. of the waves. . Tbe instru-
ments designed specificall;rfor this purpose will be described in Chapter
2. Tbey eonsists of filters of phase shift t;rpe and an automatie com-
puter of the eorrelation coefticient.

Chapter 3 will be devoted to deseribinp; the results of application
of the present method to the study oi microtremors due to traffic
observed at Hongo. Tokyo. The results obtained are as folIows; 1)
those waves are propagating in every direction with almost uniform,
power; 2) the horizontal.eomponent of vlbra.tüm..Js.,..strongJy".polarized
iJLtb~._f!i!§I§n~ndi@3i.~~:'~~e-'dr~:~.~~!L9..LNOpagation showing
that they are of Lpve ty~~ 3) the dispersioncurves~e:dut!ed~-
;;)the velocities of S wavesat yarious de})ths caleulated.

. .- ..

!
I
I

I

I

I.

Chapter 1. Theory of stationary !ltocha!ltic waves

The most fundamental material in the study of wave from the
stand point of phases iR eertain]y the traycl time curve which indicates
the relation hetween the t~ time and epicentral distanee. It may
he expected that thc corrcRpon<1ingfundamental material in tbe spectral
studies of wayes will Oeacertain relation between the speetrum of the
waves in space and that in time. At first we shall look for this rela- .
tion in the most simplified case of one dimensional waves. and at the
same time shall attempt to show the eharacteristics of stocbastic waves
whieh are stationary in time and space.

1. One dimensional stationary waves having one single velodty

With the assumption that our waves travel with a single and de-
.--e finite velocity ~ independent of the fr~ueney of vibration. our waves

U(x. t) can be expressed for the region %=0 -- X formally .

- . .- . -~ 11 .. .. 1- '. - - 11111-- .- ",
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,
." ,,' . .."" u(z, t)==~ A.. exp (ip..z) cos cp..t

+ ~ B.. exp (ip..z) sin' cP..t
cp.

. (1),'.-'
",';
i:'

where
and in

:11
~

.

'
.

I
*1

n
p,, ==2:r- ('n==O :1:1 :1:2 ... )

X ".,

This is the solution of the one dimensional wave equation under the

il ,...X initial conditions that

. ~f~. . u(z, O)-:EA.exp(ip",,) ..
1

. .

?J.JJ: d(z, 0)==~ B. exp(ip,.z).

11 J.>.- r Sinee u(z. 0) and U(z. 0) are both real. A" and B. must be the con-
, jugate complex numbers of A_. and B_,. respectively.

Now let us find the condition' under which the waves formal1y
given by Eq. (1) are stationary both in time and in space. At first,
we notice the initial state of our waves as given by Eq. (2). Here
u(z, 0) and li(z, 0) should be treated as stochastic variables wi~h a
parameter z.

The Fourier coefficientA" of a general stochastic process which is
stationary with respect to a single parameter ;e for the region .1:=0--
X is known to be written in terms of the corresponding Fourier
coefficientE.'.of the so cal1ed .. thermal or white noise" as folIows:

These a:
A..'s anri
and that

( 2)

for aJl n
/GII(I'..)I= rl
ment and

Defini.
for a give:

and using :

cp(~.t)...

=

A,.==.E.;.-{J.G('.)(p,,) , (3)
From E<;

where G<A)(p.)is not a stochastic variable. From the purely random
character of U white noise", it fol1owsthat

E".E,.==0 . n+m~"O,

!

or

E~:E~-"
-
\E \:_~ 1..- ==-2::- X'

(4)

where..the bars represent the operation of average.
Using these formulas, we have

where cu..is tl
dent of time.
for stationary ,

ing the law of

-. ..-..--...--
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(1)

A"AHI=O, n+m~~ 0,

IAIII:=IG(~I(f'nWj('1!,2;:
1

( 5)and in a similar war, .

BJl8,.=0, 11+ 11I:S0

IBJlI==IGIII (/'nWJ/.,. .2"

uation under the
These are th.e statistical relations existing among the Fourier coefficients
A,.'s and Rn's. Moreover, i( the initial distributionsof displacement
and that of velocity are independent of each other, we have

r:B.=o, (6)
(2)

must be the con-
r.
he waves formaUy
t1 space. At first,

, by Eq. (2). Here
.c "'\riables with a

~"<~,,t)"".ü[.r~)tl(z+~, t)

and using Eqs. (5) and (6), we obtain

(7)

,tic process which is
. the region %==0-
Irresponding Fourier
loise" as foUows:

cf>(~,t)= ~ JPJI {
IG.I(pJlW cos= cr"t + IGR.~f'''Wsin: r.PJltl exp (iplI~)

2;r . c-,;,. f

=
2
1

J {lG.t(fIIlWCOS=("P.t+ IGB~f':)I=sin2 ("POlt}exp (ip,,~)d~ (8)
. n ~Pn

or

From Eq. (8), we see thatg

lG-t(p,,)IZ=IG~~:)I:

~lll21W, .
,,

'-
,

"'

,

'

,,

'

,

.~
, }

(9)

~
ilt7t) becomes"jndep'eng
.~(~tim~i~6fiditi()t~~f:'i':t.SJ",.'.,.. """",,,,, ,.,.,.,,,~,,,,,...,..,.,..,.

Eq. (9) can be'cönsid'ered'"as'represent-
01 energy in the case o~ stochastic waves.

(3)

1 tbe purelY random

\
(4)

,ge.

---,.~,.- - TJI -r 1 1 -." j "'lf ~ni { I1IL .--1- r1[ V
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IntrOd~ci~gthis condition into Bq. (8) and dropping th~ suffix A we
get

)4><11.t)= </-{i)= 1 rjG(p)j' eip (il")dp
. 2«J

. '

We shall now p~oceed to investi~ the rclationbcl.1veen the
spectrum in space and that in time. . For this we define the spectrum
denaity in time as

(10) where the
spectrum d
sionaI waVE

As will
equation w}
spectrum dE
the presen t

(/J(W,.)=.!.. {U,(wn)}: + {U,(U)lIn.:
-1 1JwJ2;r

(llY

where U~(""I)ia the ~'ourier c06in~ coefficient of n(x, t) with respect to
t and Cur a givcn .r, while U,(W,.) is the cOrre::i'l>omÜngsine coefficient.
It can readily oe seen fromEq. (1) that

or

U,(w")=A,,eXP(i':n.r)+ A_lIexp(-i(~x)

}
Ur

( )
B

(
,111

)
B-

(
-,,)

)I WII= ~exp t-!!x +~ exp -I~X
cu" C W,. c:

(12) whieh can re

2. Dispersive
and 2J1'''

AW~=CA~~ -:: X
J

"-,.(r}= (' AI' --..., Pu-- X

Weshall
that Eq. (15)
cation except
the constant ,
constant for a
constant in tj
write

Inserting Eq. (12) into Eq. (11), we get

</>(WII) =

[All 'ex!>(i!!!ll;t )+...4.-nexp (- i(JJ",y)J~ +ftl" cxp (i~'x)+ B_. exp (- &~X)J
'

C. c'_'" .. e-",. c

,-- ., 1.l1/IJ.2n" - .

By tbe use of Eq. (5) this may he \\-ritten as The ef}uation CI

94 4 . ,--
f!J(w,,)=-' n' -n+ 2B,,8_,,'''';,

4JCIJ,,!2«

~

Finally, inserting Eq. (9) into thi::i, we obtain the following equation, lntroducing- of ;
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~(w)== IG<p'W.jpj2:: = Iq(w!<">!,=
jeuj2:r C ß

(14)

where the suffix n is dropped. This is the relation which connects the
spectrum density in spaee and that in time in the case of one dimen-
sional wa'Ves.

. As will t>e shown later, as compared with Eq. (14), the following
equation which"'br elatiCf ~Wicl1crn:~m:j::tiRILr
~~ ..~. is more convenient for the )>urposeof
the present study,

~(;)=~!:- qJ(UI) exp( i.~ ~)dtu

or '(15"t1/i!.k"'"~
.

</.(;)= ~ C""'(111) COS (.!!L~)dllJ
.. Jo c

",hieh ean readily be obtained by Eqs. (10) and (14).

2. Dispersive waves
'" -' '.

\Ve shall now proeeed to the ease of dispersiv(> wavcs, nnd !'huw
that Eq. (15) obtained above holds also in this ease without an;y nlollifi-
calion except the substitution of the function r«(I) of frcqu(mcy tIJ ~(.r

thc eonstant Yelocit~"r. For this, we notice that if we take ~ :."
constanl for all 71. the interval 4IJn between conseeutive "'" is no Ion}:.r
constant in the dispersivecat:e and yaries with 11. Then we n.ay
wri tc

Je""=(
dw

) .Jpn .
d" ..

(1ft)

The c(}uation eorresponding to Eq. (14) js now written as

~(eu}=LG(wl~W
dwldf' . (] j)

IntroducinJ.! of thls into Eq. (10) yields the final formula.

...... "". J . '1"1-'11''' .
"

r - - ~.. EI .. w
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)dp d',' '; =-- J\W," -exp - '-~ -.- tU
2:T -.. r(w) dw

==.!. r- tP(w),eos (~~ )dCJJ
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3. Spatial autocorrebtions of filtered waves (1)

In this section the most essential part of our mclhod will be il-
lustrated in the caSe of one dimensional waves. Corresponding to the
separation of a seismogram into stlccessive particular phases in a study
of .. phases ", the vibration of a seismograph is resolved into simple
harmonie oscillations: in .other words, 1[~~i~r:'iiiia1fSiiiSapp1ied 1;0:

~. For this ~po~~~"~i-~use"'e(ectronic 're~'.-
sonators to whlcb \Veshall refer in Chapter 2. If the filtration by a
resonator having frequeney tllo is sufficiently. sbarp. to allow us to a5-
sume the spectrmn den~itj' of the Cilteredvibration to be

\ :
I

4"( w) == P( ttJd)C( W- tUu) , w > 0 (19)

,\'here o(,u) is the Dirae o-iunetion, then the eorresponding spätiarauto-

_.is written as

'N~. tllo)==P(Wu)cos (~~ ) .
c(wu)

Defining t1i~~~~~~,t~,~J
(la. Wd)~ 11f,0!~'t ,

1>(0, (Uu)

(20)

Wl\ may write it as

1'(;, tdo) ==eos (-3~ ;) .
r (wo)

(21)

~0~ M*~ ~~

--_uu
-- u--

-- --- .
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to .a frequencyui-:
Next, ~~::9'~~

"w""i'.
..onJ.

"- §ro.~""~;'''' ,J
w~ can separate the COmpoSltewaves mto tbecomponents by

measurlllg p(E,OIe). Now we" write the qu.antities related to the n'th
eomponent wave by attaching the suffix !!.: for instance, the displace-
ment of the ft'th comPQnentas ll..(r.,t) and the eorresponding velocity
as rJl(w), Tben from the assumption of independenee among the com-
ponents, it follows that

\./

U(z, t)- k u..(z, t) ,..

cJ>(e)-~cf>.(e)-'ki.J<p.(w)eXP(ic.(~/)dw,
t/

cf>(e, Wu)== ~P..(wo)cosC.<:> ~) ,

. P(~...J- ~Q <OS~~
) . (22) ..'~ JlWu .

The last equation shows. that e number N of components is,
finite,'- ",": "". "'til'tI1e'"'' rcen~~fofweiof. th'
"tb. c. ing~~~rfrc;m~the";af:e"of' o'(e', ~.

.'gi.v~n"",.and lQ '.', 2N~~: diJ~ei-":Jt"7;. "~,~I,W~"'":" . 0 '.~ P~:.J
~trnail~'i]{~~~W~lrtwhrcit'ihe wa\"e ean be assumed as
composedof component waves having continuousl:r distributed velocity.
In this ease, introducing the' velocity distribution funetion defined as

p(w, c)=P.(w)/Jr.

and replacing the summation by the integration in Eq. (22), we have

p(e, 01)_
p(

l_
)

r- p(w, r) cos (-!!!-~ )dc ~

w J. c(at)
(23)

From this and using the Fourier transformation, we obtain

c'p(w c:-) 2
!
- ..1. ) ( tlJ e)d:--. .' - = t'\~, w cos

c( )
....

P(at) 1C.' 01

(24)

. .' --:--'--"-- ,.,.~";_..,..., _.~= -

.., ~ - '" . ... 11' . ' ._~ -lI' .. :.l1li . 11 .. ,,'.'~ - rl~l"'r:i - Da'.f'J .. f - . ~~. .~
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4. Two dimensional waves of a single velocitv

Now let us investigate the case of two dimensional waves, in
whieh the reasonning is quite analogous to that gh'en above for the
ease of one dimensional waves, though there appear additional terms
such as the direction of propagation and polarization of vibrations. At
first we shall deal with those waves whieh are neither dispersive nor
1>olarized.

Assuming that our wavcs travel with a single velocity ~. wc write
them in the form

:md ('01',

(nI' all 11.

l' :;jn,
[unctjon
8pCctr~lm

I,"

. .-' .,

!l(r, Y. t)= S~ All" eXil(i/'nXcos 11..+ i/'"I/ sin 1I,,) cos «('p,.f)

+ ~L. B..", ex» (i/'"X cos 8...+ i/',.!! $in 11..,)sin kl'i). (25)
('/';'

This is thc solution of a two dimensional wave equalion undel' the initial
condilions that '

ll(Z, y, 0)= ~L An.. exp (ip"z eos tl",+ i/,. 1/sin t1m) 1.
il(x, y, 0)= ~~ B"", exp (iP..z cos 11...+ i(',,!1sin (1..) f

Fl'om the a;

1'lo('h:l:,lil' \\"

(26)

111'

Since 1l(.t!,Y. 0) and ti(r, /1.0) are both real, Alt... and BII.'" are the con-
jugate eomplex number of A...m+(,,)and B ~+(.,) respectively, in which
(::-)is a suffix defined by the relation. 8(",==::-." '

Analogous to Eq. ,(5), the mean value of the absolute square of
Alt.",and that of B 'are written as

Jntl',,{bl'!I~~ ~I:

(/.I~ 7 I) - r.1::1'\" I' , .,

IA"IItI:=IG"(/'1tt u...)I:f'1IJII..J,.~

I' (2.-:):

IB I:= IG"("...(1..)1=p"JII", J",
f

.

(2.-:): .

(27)

Rl'!'h:cin:! tnl' ~
\\'e h:ln~

,.'.(~. ~)=

The spectrum dEmsity IG(p. fI)l: in the above equation represents the
amount of power carried in the waves at the initial state per unit area
of the phase space whieh is formed by two dimensional wave numbers
;'=/' cos 8 and P=IJ sin U.

anll aceording-1y

:(,"Ü'. 11)

-~.~~v;~.", ;",.,...~..,~~,.~ "."
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e.=" co, we can cal-
ave baving tbe assigned
1 question.

dimensional waves, in
at given above for tbe

- appear additional t~~s

I mtionof vibrations. At..
!! neitber dispersive nor

19le velocity c, we write

18",) cos (r-p"t)

sin 8",)sin (t"p"t). (25)

! equation under tbe initial

rip"y sin 8",)

\
. (26)

rif. n 8...)

in and Bn... are tbe con-
:-) respectively, in which

of tbe absolute square of

pn

1'p.! , .
(27)

re equation represents tbe
! initial state per unit area
dimensionalwave numbers

.. 111

, ... "-"--'"

1',Irl :>.1 ~Jlflrr "",I Timt' Spul/'" (1/ Slatil1Jl'ITY Shrlm!'li.' n'n,.,./t.

A!!ain corresponding to Eq, (5), we have

A"",:A".",.:""0, . n ~ n' ,m ' 11I.':r (::-)

iJ..",-'B::~-:-O., n ~ n', nz~ 7/1':r(~) \

:111.1 C'C)1'!'cg}'IOnding to Eq. (6),

A"",B;'.;=O

.1:'::;

(28)

(29)

fn)' all n, m, ?/' a'nd m',

l'!'in~ lhe abovc' formulas \\'c ean ",rite thc spatial autocorrelation
funclion It.(;,~, t) for the two climcnsional wav'cs in tcrms of theil'
~1)Cctrum c1cnsit~' in spacc as

IHE. >;. t) L':ll(x, y, 't)li(:r+~,y+~,t}

=~~P..J(I"J~J"!
{I

G"(n (I )I:cos~ «('( ' f )
(2:~): "n' '" I ..

+ 1(~?Ct,~. ./~~"l!~ sin: (r,."t)
} exp (i(.,,~ cos 0",+ il'~" sin fl,,,)r'". ..

Frnm thc alMwc {'lluation, it 10110\\'sthat the condition for a stalionary
I'lodlagtic \\"ave of two dimensions is '\'ritten as

. ,_. '.

/.\'

IG'(p, (IW= iG/f(~.,(1)~:

)

("/" .

",?,:A_1':= I l j'--;,n", ; . ,,~.

Jnlr~lIlul'in}! lhilt inlo ,/>(~,'i, f), we obtain

(~(I)

IN;, ~, f) -: 1'(~, >;)= 2:.2:.p"Jr,,:O,"IGol(p", 8..)1:exp (i(',,; cos IJ",+ip'J"i sin fl,.). (2~r

Rl'J,lacinS!the summation by tbe integration and dropping tbe suffix A
wC' ha\'c '

(H;, ~)==(2:rHIG(P, 8)12exp (if'~ cos 0+1'(1'; sin {I)f'dpdO

:mc1ac('orcHngly we also bave by tbe Fourier transformation

!(;«(',,0)1==Hp(~, ,;) exp (-i(J~ cos {I-if''i si~ O)d~(l"i

(31)

(32)

. '-!:(! :~~":rP .':t' .',"'. .,,-

Ii
" . ..:-~
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.9n tbe other hand, the spectrum density in time of the wa\"e is
\\"ritten as If we introdu<

funcfion, Le.

1/'(111.)-1 . (U..(,~..»~-+ ( l!,(~'~!'~f
-1 J(IJ.!2.~

where Ur(",.) is the Fourier eosine coefficient oC u(x, 1/,t) with respecl
to t for given z and y, while US("'II)15 the correspcnding sine coef-
ficient. We see in Eq. (25) that

(33)

we see that a

f#J(r)an!! the SI

U ( ) ~ A (.w.. ' (} .IIJ.. ' 0 )e "'11 = ~ ".. exp ,. ;r:cos '"+~ - y sln m
'" C C

U( ) --B... (
,tl) n .(/J.. '» )."'" = ~--:"exp ., ~.r.cos ",+t. "ysm/,..

'" fIJ" C C

(34)

lIJ"==rp" . . .- .

Eq~~...(27), (28). (~O~ a~l- ~~1k~,~,:. \\"..?~~!1,\~~rit~.~~~~v:~i11~~'~~!J~~J
terms of the Rflmäuf'>t=orreIatlOn functlon cfl(;,~) as fol1ows,',,' ,:;(,"",-"",,,,;; .~."',. .. .."",XW"'.'~" . ..,-.,'-.. ,',.

This Jast equatic
mation. ft is
dimensional waVtB '. 1~ IA 12+ I ~m:' "'n' .?., IUII

(P«(IJII)~-'" 4JflJft 2.~ s. Dispenive wa

= 1 r:.
\

c(",,,, ,,)
~

I

~W"d/J
4~rJo r . r.

=..Lr:"IIJ"dflrrcfl(~, 7])eXP (-i:!!~ COS 0- i~"r,gin n)' rl;rl." .
4~r.Jo c JJ c c

It will be sh
of dispersive wa
the function r(w)

Takinjl the rt

(35)

Reptacing (~, ''I) by a circular coordinate (r, {,) defined as

~,." , ,'w
.il:~'?~.f

W
' "~

"

,;c'<:~~~"";>

,

'

~'.:~r.sm
'$~ ,.,..,'.

we obtain

and using the reJation

J

2.
dnexl' .{- ;t'" C05 (f} - ~.)} =2~.J,,(!,,')

0 ,

corresponding to E
(32) and (:1;), we t

wc have fr~m Eq. (35)

(/1(CII)=!. rC/.(,,, ,;'}J..(f.r} ('~'d';'2~Jj c (36)

Tben the HankeJ tr

--- .n_"
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HIT f the wave is If we introduce m

jf1fn.#iojiI~~.P~.iiiii~~L.",-->,;a

~~1ati:n.-"~--"".""""',~---

(3;~)
4>(r)-~JcJ;(r, .p)d'" i!P

~I(X, 1/, t) wilh rcspccl
responding sinc cocf- we see that a one to one correspondence exists between this function

(MI') and tbe spectrum density (/>(w)as follows

sin Om)

sin 1,,")

tr r--
(

w
)(/>(w)-=C;Wjo4>(T).1uer rdr '.

(34) - 1 r- (
w

)4> (r)--; jo (/>(w).1uer dtll 1!9J1

le the speclrum densitr
jon t/J(:, 71)a!; fol1ows,

This last equation (39~is derived by the use of tbe Hankel transfor-
mation. It is dear that Eq. (39) corresponds to Eq. (15) for one
dimensional waves.

S. Dispersive waves oE two dimensions

.tl'
-1 ~in(1}l~(b; .

(3:')

It wi11be shown in ~bis,s~tion tbat Eq. (39) also holds in the case
oi dispersive waves without modifications eJCcept tbe substitution of
tbe function r(cu)of frequency Wfor tbe constant velocity c.

Taking tbe relation into account,

efined a.c;
dw.=/~ JP71

'\dpJ7I

we obtain

4'(w)==.!. dp P"
\
G(w, fJ

)r
~df}.

4:r cL" j. c c

/! . (36)

,corresponding to Eq, (35) of non-dispersive waves. FlOm this and Eqs.
(32) and (37), we have

d>(cU)-::;~l~4>(r)Ju{l'{:)r)rdr.

TQ(rrr)

Then tbe Hankel transformation yields the final result:

,"

0' -,".

. .-.'-', ;. ." '''''.-.-- --'.., .. .. I .. 1 'JiilI'IitM!.
..

-.1 1 1 " .. -.
--'.--'
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,
I
I

"'(1')= r- c(",,) !!:!!..(/J(CU)Ju{
...!!...r)~ 1:f.dw

Jo ::w dp c(w) c(UI)dUl

~.!.r- tP(UI)J,1~)'\""" ,
:: Jp '\ ('(UI)r

f:l~~)iI~,.,11

pagation, or ir
the case of se:
belong to the
latter.

In order t<
ponent vibratio
lar to the direc
the vibrations (
spatial autocorrl

6. Spatia! autocorrelation oE filtered waves (2)

As has been mentioned in Seetion 3, the measurements in our

meth~~~~~_~~~-~- t~~ steps; mJ;:~1:(~~~?~,<~n'v~br:atio~s
I'""mortg filtered.. vibrations, die. spatlal autO-

~~W;:k2!t Sö" ti1r0t-aS'~;~~~.!:3:~e~~ki)ncernedwith
waves naving a smgle velocity'corresponding to a frequency UI, the
azimuthaUy averaged autocorrelation function '7;:{,')of the wave filtered
by a resonator of frequency Wal is written from Eq. (40) as

r/J

cp.

we have from E

- ~

( CIlg )cp(r) = rf.(r, W,,)=P(CrJU)J,1- r
c(c/Ju)

(41)
t/I,(r, ~')=(2:):Jj

""~('"~,.)=(2~)' Hwhere P(1''u)is the same as defined by Eq. (19). In consequence, de-
noting the corresponding autocorrelation coefficientf(r, wu),we have

f(r, c/Ju)="u(,'~r ).
r( cUu)

rt:''if<:~ii~::measure~t~t--:(d~).for ,a. certain
"",-,-"",~"V'-#',v'*<ii~"'~~..J.""'" .,"" .""'-""'''' .. ,': t1iei.' 'furicbonf I.l,cÖu)i.i.e.. the' dis-:~
c<","-".J~,., '.. ~ ," ".',..,.~ ..."'" .-, . . .)

\~- --.c~es]Ondmg'~;raiige' 'öf frequency
A.<..",,,., ,, '"""'.";,'~.,L;;~:".,".,.~. ,.;,. ..'<'.. "., .;i'..~.,,,..

and in the san
polarization

(42)

,p,(r, f')= 1
J
r~

(2::,r J

,pA", \-',)= 1 rr c
(2::,fJJ

Now let us proceed to the eases in which waves are polarized, and
Iater refer to the cases in which they are composed of partial waves
having different velocities and the above procedure cannot be appJied.

The abmte eqUI
ponent autocorrelatj

7. Polarization
is written in the sa

As far as two dimensional waves propagating over a horizontal
plane are concerned, it is evident that there is no polarization with
respect to the vertical component of vibrations. On the other hand,
the horizontal c.omponenthas two typical modes of polarization; namely
the vibration is confined either in the direction parallel to that of pro-

cp,(r, \-")+t/'.,,(r, f')

Thus if we know th.
obtain, by the use 0
dicates the distributi.
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(41)

, In consequence, de-
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(42)

lres ,(,e, (IJ~)for a certain
tion c«(tI~),Le, the dis-
ng range of frequency
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pagation, or in the direction perpendicular to that, For instance, in
the ease of seismic ""aves, P waves, SV waves, and Rayleigh waves
helpng to the former, whl1e SR waves and Love waves belong to the
laUer"

t In order to deal with those polarized waves,
i . "
I

, '"1>1\'" an O<Orfeabon nnetiOns'lor th";t;~-;:,':;':'::'nts ..

r/>,(r,Y')~ t~(z, y)ü,(z+-':cos'{':iI+r 'gin f')
\

4>ot('"y.) ;:0:;:!t+(z. y)u.;(z+r co~ "', y+ r sin y.)

we have from Eq, (31) for waves of the parallel polarization

</>,(",Y')= 1 . rrcos~(0-4')IG(",flWexp{iprcos(O-y')}pdpdU
l(2;r).Jj , .

, (43)

rf>",(",Y')= (2:):H sin' (O-y')IG(", 0)1:exp {ip1' cos (O-c/')}pdpdO J
, .- ., . .

and in the same way we. have for waves of the perpendicular
polarization

t/>,(I',y.)= (2:):H sin: (tI-~")JG(p, O)\!exp {ipr coS(O-c/')}pdpdO l
1 . , (44)

t/>i", f')= -rr cos~(n-y')IG<r', OWexp {i,w cos (O-c/')}pdpdO
J(2;r)' JJ '.

The above equations show that in both enses the sum oftwo com-
ponent autocorrelation functions

4>,(r, f')+4>.;(r, Ir")

is written in the same form as Eq, (31) fornon-polarized waves

4>,(r. ",) + t/J.(r, f') ==(2~ rH IG(p, 0)12exi> {ipr cos «(J- y,)}pdpdfJ. ~f1

--' ,- ,"'''' ' " '-'C' T ~.. ~.' 0:.'-- r.. ......... 8-- ~'~A' "r~ '-' . ..........
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On the other hand" the mode of polarization is shown apparently
in the azimuthally averaged autocorrelation functions:

4>,.( r ) =- 1 r</>r(r, 'I")d.;
2,,.j

",.,,(r)- i,. !",.,,(r, t/')d4'.

Likewise"

,.- .1 ""."

'"V

'i.~;
"".,

t
~f,'
1i,
~,

From Eq. (43) and the following relations

I:ceosl (t/,-O) exp {ipr cos (\-"-O)}d;-;r{Jo(pr)- JzCpr)J

1~sin: (t/,-tJ) exp {i,,,. cos ({'-fl)}df'=;r{Jov".)+Jipr)} 8. Special ca:

In this se4
(a) /G(p, 0)/2 is
and tJ=tJu+;r,
Chapter 3 to b.
quakes may bel
their origin, "
the latter a .. p

In the case

From tl

~r(r, CIIu)and
wa.ve.

we obtain for the parallel polarization,

1/1,(1')='~ (2:)2H \G(f, tI)I={J"(,,,')-J-.:(p.r)} I'dpdtJ 1

4>..(r)= ~ (2:)=H IG(/" f/)\:{.Ju(,J1')+J=(pr)}/.odiJCltJ\'

(46)

In the similar way. we have for the perpendicular polari1.ation,

4>,(-r)= ~ (2~)=H lG(p. D)I:{JJ.pr) +J:(pr)l pdpdtJ 1

",.,,(r)= ~ (2:)=HIG(p, 8)1={Ju(,,,.)-J:(pr)}fJC/-pdU J'

If the correlation is taken among the vibrations filtered by a re-
sonator of frequency WII, we may write

(47)

we get from Eq.

~I IG(/" tlW /JCltl=P(Wu)ö(p- c(:») ,
(48) Thus "'(r, f') is in,

can replace r/J(r)b:
previously, and we
to t/" This also ho

On the other b

Then inserting this intoEq, (46), we have the corresponding'äiimutbaJ-
.;a:. . ;:10 ~:~fV1\a(öns'f§rJ1ie i>arall.~I,polarizatioh,'

, T~""'''''-''~-''' " """""..,' <;"",,,.,,,,,.~..,

4>,(-r, «Iu)= ~ P(lUd){JU(i:u),)-J:C'(:;u{)}

}
4>.,,(r. WII)= 1 P(UJu)J.Ju(.I/Ju r )+J2

(c(
<<IOr )

l '

2. 1 ( (wo) . wu).r

(49)

and we have

J
.,~_.~ .~~ ...,...,

f :'-';"'~'f:;,,!:,'.'~:,\,.., , ~ -.~.-----_... ."--'
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'.' ~~. is shown apparently

;f'°ns:

-1.

:1 .
. ..{J,,(pr)- J,(pr)}

,

,

',/J,(pr)+J.(pr))

;.(pr)}/4pdIJ 1

, . (46)
!~(pr) }pdpdfJ 1

I I 1..
~Uar polanzabon,

':(/11') t pd/lClfJ 1

:(pr)} ~pd(J j'
)rations filtered by a re-

(47)

-
(
aJo

)
.) . (48) .

C lUg

:!corresponding azimuthal-
>aralleI polarization,

(-~r )}

]

c(UJo)

~~g{)} .
(49)

' I - -
'~~/.:.'),;:1Y"''''''''''''''''''~~~~''---

"-,'-'.,, "''''
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Likewise w(>have for the ~1MlP$>1!!i;!!iottif

.
4,,(1., (lJu)= 1 P(cuu)

{
.lu( (Ou "')+J:( ItJU 1.)}

1
2 c(~u) citOu)

4d1", ClJu)=1 P(IOU){
Ju{ ("" 1.)-J/ w" 7,)l

J

'

. 2 C(IO,,) =\c«(I.Iu) f

(50)

From the above formula.c; it is dear that. . .~'''eme ..'t!'~öl
,.e'it1H!i!rätölilruirD!:!l1~,~l~!~~Jl~1j.. of tHe-- -~-'-~~~", ;jjj

H. Special cases

In this ~ection wc shall consider the following two special cases:
(a) 1(;(/" "w is independent of (I, (b) IG(/" tlW is zero except for iJ=tI..
anti ,,=('u+~. For instance, the case of microtremors will be shown in
Chapt(>}'3 to be of the former type, while seismie ,,'aves due to earth-
quakes mar belong to tbe latter if observed at a point distant from
their origin, We shal1 caU the .former wave an "isotropie wave" and
thl' latter a .. plane wave".

l_~~ writing'

IGÜ', tJW::-: IG(/,)I: . (51')

w(' ~'N from Eq, (~1)
'"

1 i
-

cf,(7',t/,)= IG(/')I:J..(/I1")l'dl''2r.n (52)

Thu~ IJ.(,., \") ig independent of ~', and it is clear that in this ca.c;eW(>

ean replaee 1>(/')by (/JeI',t/,) for an arbitraIj' ~" in the formulas obtainl'{l
preyiousb.. and we need not take tbe averageof ~()', {') with 're~peet

. to ~". This algo holds for polarized isotropie waves.

On thc other band, ~mp~::~T~""'" ~w~y,~fwe may wrile

IG(fJ, (J)12=IG'(/I)I=o(8-fl,,) (53)

amI wc ha\'c

.. - 11111 '1- . [11" ll' l1Ii ... "I
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(54)

If \,'e"observe the wave filtered by a resonator of frequency CU~, it fol-
lows from Eqs. (48) and (53) that

. 1 rIG(", fJW{"ltl= IG'(pW" = P(nJ,,)i{1'- CU'I ) .2.~J r(CI',,)
(55)

Then the correspondinR' autocorrelation function .f.(r. (', c",,)is written as

'/'(", {', c".,)= p(w.,) cos
{

C"tI r cos (f'-I1..)
}r( ,u,,)

and also the corresponding autocorrelation coefficient as

{I(/", {', (11,,) : 1,(", \0>(11,,)=eos { "'" ,.cos(,,"-lIu) }
1,(0, \-', ",,,) r(,~,u>-' .

or

cos({'-",,)= 1 {(-1)"CoS-I{'(1',{', "'u)+ mr}.r("'u) ""''''

(56)

(57)

(58)

This last formula (58) sh~Ii~:!~.~~;,B;~.~~tlri~h!;;.;t,Ji~::;J.e~ocity - c(lI.I,)/
, '. .P.J."9~~1()n bymeasunng .1'(1', t,". ,,,,) ,

"'''''''''''''W""",,,,,,,,-,,,,,,,,,,,,,,,,,''-',-'A..,,, ,'.: '-'." '.<i' ,-

~..e- value oe n is known beforehand. '.-
. '''~''''.'''''''.' '. .' :'" . - - '-.

Likewise. . h9.Ai!;~~'ri~lie:~!~!~'ehave, for instance,
for the parallel polari1.ation

p,(", \0".IIJu)= eos~ ("u- \o")P("'i,)cos { "'" l' CO!;(.,"- Hu)}- r.(ctJ,)

cp,,(", 1', LIJ,,)' sin~(8..-\-,')P(tIJ,)cos {
lI.I" )' COS (\0"- Hu)

}, c( c",,) J. (59)

''''''--:ve1ocity-and the direction of propagation can
,IizatiörC'~~ich:':':lit:neeäea""tö'obtiiitf~th~

n. coe:ffiÄien('the~;nO(le~:of 'p()lari'zäiion cannöf

~
.

"U;~'''''''
'

",;~~~irö~;ani:~:;i;~:t"~~:&"~~~~:t~~e~;;t;:~
lf"-n .:t-~,.;;..~~;:;",..",,,,..C""~",_,,_l...,~R ~, ' -

Our method will, however, be effectively applied to a wave com-
posed of two independent waves. whieh differ from each other in the-

~" 7 .1."", . r_~"""""~ c,""'--~~--
--"'" ;--- -..J,,,,~

..U UU-

-.
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In this SE
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t/J(,

cp{r,

ji{r, (

This last equatiOJ
wavcs is finite, "
ror each cornpone
different 1"S.

It may happe
velocity of compOJ
"'ave R'roup, we d

and then we can v

From this it folIow:
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)f frequency /11, it fol-

('- /11.1)("(w.,).
. (55)

eh(I', ';', w,,) is written as

'- /In)}
(56)

eient as

cos (.;'- (Ju)}
(57)

. w,,)+ n::} .
(58)

rrnine the velocity r(wu)
'\ by measurinp: (I(I',4', "'u)
3 known beforehand.
\'e, we have, for instance,

r cos(1,"-Oll)} 1 . (59)

,'. cos (.;' - Oll)} J

:ection of propagation can
is needed to obtain the

Lodeof polarization eannot
lIane wave is better deter-
ating the arnplitudes for

rapplied to a wave corn-
. from eaeh other in the

... ".............
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m011\!of poJarization and in tl~e velocity of propagation. ! The general
n:lt11J'\!or the plane stochastie waves will be given elsewhere in the
fut 1II'l' in eonnection with seismic wayes.

\

i). Vclndty distribution

Jn {hi:; ~('ction we shall deal with two dimensional waves of multi-.

"li' \'l'Iodtief'. 1'- ".'Jn ;) ..~1>.'I~~~~~::i;1l'ü§'[i~!i~e~, and denot-
in!! a lJuantitr fE'at to the n'th eomponent wave- 1}f""altaehing the
~lIlIix 11,we write our wave in the form,

lt- L. u..(~,y, t) .
..

A:-:~uminA'the statistieal independenee among the eomponent waves
a:-; in the ca!'e of one dimensional \'\'aves we get the following relations,

1/.(1",~,,)= ~ 4>..(r, ~,)..

(f>(1')= ~ q,..F') , - .
..

' ( . ) "7 ( , ) " P( \1 ( (1)11 )'l' I. WU = ~ .,)" 1, CIJ"= ~ .. w,,"'u l'
" .. (",,(IIJu)

7-' /' ) =" P,,(II)u)J ( . (1)0 ).". ,W,. ~ ~ r,
ft ]-)«I'u) . C,,«fJu)

(60)

~""~'.;mr "".".." ,~ -', ... ."'"'''''...'''

Thi~'7!,~~,1~~,~,}J,~M~~i~~W~J..~di,~tr"~,,,..;:t~~t.. )~' tne-:'iiumber' N of eomponen;tJ
~ ,. r.ntt~~~~~~:~~*~~}~!~~el~~tY~~~d.,.,~~~..R~~~!l~ag~ C?f P9w~

..
.

~~~~.t!y...m~~~1J~LLi{!~,~"}J~!:",!_&"!!~1} (~o ~n.d.. ~?:...(~~,,>.~l AI
~ n

ma~' happen, as in the ease of one dimensional waves, that the
n'1oeity of component wayes is distributed continuously. For such a
waye g-roup, we definc the veloeity distribution funetion by the relation,

l>«fJ~.clI)Jr..=P..(wu) ,

and then we can write

t/)(1', wu) = rp( (1)°' C )Ju ( (l)u ?')dc .
J c( WII)

(61)

From this it f()l1ow~b~' the use of the Hankel transformation that
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I~CU,.. l') =(f./o r-T{I', w~).,u( w"-" )"d",
P(UI~) r.' ].. <'(CI)~)

(62)

~
~

~ , . .,..-.'
Thus we have the formula by which to determine the velocity distribu-
tion funciion from the value of f(1', w~)for 1'-=-0.-.00 in the case of
two dimensionalwaves. Eq, (62)corresponds to Eq, (24) for one dimen-
sional waves.

In the case of the polarized wave of multiple velocities, we see
from the results obtainec1in Section 7, that if we replace, for instance,
~r. m,,)by the Rum of the component aulocorrelation functions,.J

;;;
~
~

1J,.(I', WII) + 4)~.(r, Cd,,)I
~.
};

every fortnula in this section ho1r1sunaltercd.

10. Dt'lcussions and summary

, The rCRults obtaineel in thc rreredin~ sectionR indicate that the
Rtudy of wa\'es from the view))oint I)f Rpectrum will give u~ additional
informations \yhich have heen ncglccled because of the lack of proper

\

method of anab'sis for the purpose, We have dealt with one dimensional
stocha.c;tic waves in detail, and extended the reasoning followed there
to two dimensional wav~s, It will be ea.c;y1:0proceed to the investiga-
tion of three dimensional waves, but this does not seem to be practical-
Iy necessary for our measurernents of waves are usually confined on a
plane Rurface.

\Ve shall cnumerate here the principal results ohtained in thc pre-
sent chapter.

( 1) The spatial autocorrelation coefficient ('(~. w.,) of a one dimen-
~ional wave having a single velocit~. (' amI being filtered by a resonator
of frequency cu"is given by the relation,

f{~. WII)=COS((lI" ~) .
c (21)

This holels also for a c1i~persive wave with the substitution of <'(11111) for
the constant velocit)"(', . -

( 2) If we are allowed to Msumc a cont.inuou:>distribution of velo-
city in a stochastic one dimensional wavc. wc ean obtain the velocity
distribution funetion '11(""" r) in thc form.

1f:. .~"""~ '-" , ~~_J_+'; ~,_.:" ..~:.~~,,,' ..

-"Y~V~'''''V,r!'''''_T..\...n '"--' _.- . -- - --' .." u - .. u - - u u - .. - -- - - -

Part 3.j

( 3) In
city and bei
between the ;

and the specl1

( 4) The a
the above wa ve
by the relation,

Thi:,; holds also ft

stitution of r«(I)o)
-(5) In the I

uutocorrelation ftJ

radial one q,,., It
in lhe same way
wave does. The ~
filtercd by a reson
and are written in

cj>,.( I., CI)

q,,,.( I', (IJ

rur the parallel pola
are written as


